Изобретение относится к промышленности строительных материалов и может быть использовано при получении теплоизоляционных бетонов, применяемых для изготовления ограждающих конструкций с высокими теплоизоляционными свойствами.
Известна арболитовая смесь, включающая цемент, древесную дробленку, известь, гипс, хлорид кальция, отходы хлопчатобумажного производства в виде сора и пыли при следующем соотношении компонентов, мас.%: цемент 37-42; древесная дробленка 28-33; известь 11-13; гипс 1-3; хлорид кальция 4-6; отходы хлопчатобумажного производства в виде сора и пыли 10-12, причем водоцементное отношение составляет 0,7-0,9 (патент РФ №2307100, кл. С04В 28/00, С04В 18/26, С04В 18/30. Опубл. 27.09.2007 г.).
Недостатками известной арболитовой смеси являются высокий расход цемента и высокая чувствительность к экстрактивным веществам древесины, негативно влияющим на прочностные свойства цементного камня.
Известна также сырьевая смесь для изготовления неавтоклавного ячеистого бетона, включающая цемент, наполнитель, порообразователь, воду и добавки. В качестве наполнителя используют глины. Причем соотношение между цементом и наполнителем принимают в пределах, вес.%:
(авторское свидетельство СССР №337361, кл. С04В 15/02. Опубл.05.05.1972 г. Бюл. №15).
Недостатками известной композиции являются низкая прочность и высокая чувствительность к минералогическому составу применяемого наполнителя. Например, при применении в качестве наполнителя грунтов с высоким содержанием глинистых минералов, особенно монтмориллонитовой группы, необходимо увеличивать расход цемента в связи с ионообменной активностью глины, ухудшающей условия твердения цемента. Для снижения негативного воздействия глин в смесь вводят известь. Однако вводимая для защелачивания среды известь приводит к удорожанию композиции и усложнению технологического процесса приготовления изделий. Кроме того, при высоком содержании в глине монтмориллонитовых минералов значительно увеличивается расход извести (Гуменский Б.М. Основы физико-химии глинистых грунтов и их использование в строительстве. - М., 1965. - 255 с.).
Наиболее близкой к предлагаемой по своей технической сущности является бетонная смесь, включающая портландцемент, легкий заполнитель, содержащий торф и древесные отходы, и воду. Легкий заполнитель в качестве древесных отходов содержит опилки, а бетонная смесь дополнительно содержит глину при следующем соотношении компонентов, мас.%:
(патент РФ №2136624, кл. С04В 28/02. Опубл. 10.09.1999 г.).
Однако данная смесь отличается низкой прочностью.
Задачей, на решение которой направлено заявленное изобретение, является повышение прочностных свойств материала при сохранении простоты состава бетонной смеси.
Технический результат заключается в получении более плотной структуры минерального каркаса бетона.
Поставленная задача решается тем, что в бетонную смесь, включающую портландцемент, опилки и глину, дополнительно введены ацетоноформальдегидная смола (АЦФ) и электрохимически активированный раствор хлорида натрия при следующем соотношении компонентов, мас.%.:
Ацетоноформальдегидная (АЦФ) смола способствует увеличению смачиваемости зерен минерального вяжущего и глинистых минералов, что, в свою очередь, повышает степень гидратации цементного вяжущего и приводит к росту конечной прочности изделия. Кроме того, смола АЦФ адсорбируется на зернах глины и в процессе высыхания материала полимеризуется, придавая дополнительную прочность межзерновым контактам силикатного каркаса бетона. В результате образуется более плотная структура минерального каркаса бетона.
Электрохимически активированный раствор хлорида натрия поддерживает высокую щелочность цементно-глиняного теста и нормализует гидротационные процессы цемента. Наличие щелочных металлов в растворе способствует ионному обмену и экстракции из минералов глин ионов щелочноземельных и других металлов, образующих малорастворимые соли и выполняющих роль центров кристаллизации. В результате гидратация цемента проходит в более сжатые сроки, что содействует ускоренному схватыванию смеси и повышению конечной прочности изделия.
Совместное присутствие в бетонной смеси АЦФ смолы и электрохимически активированного раствора хлорида натрия эффективно нейтрализует ионообменную активность глин независимо от их минералогического состава. А выделяемые древесными отходами экстрактивные вещества поглощаются монтмориллонитовыми минералами глин, что приводит к снижению как адсорбционной активности указанных минералов, так и к снижению ингибирующего действия экстрактивных веществ на портландцемент.
1
2
3
4
1
2
3
4
Приготовление бетонной смеси осуществляют следующим образом. Портландцемент, АЦФ смолу и 1/3 от расчетного количества электрохимически активированного раствора хлорида натрия смешивают в смесителе до образования однородного цементного теста.
В качестве ацетонформальдегидной смолы (АЦФ) используют, например, продукт поликонденсации ацетона и формальдегида (молярное соотношение 1:2 или 1:3) в щелочной среде - АЦФ-3 (ТУ 6-05-221-122-78) с концентрацией активного вещества не менее 90%, а в качестве портландцемента - портландцемент М 400 производства АО «Вольскцемент» ГОСТ 10178-85.
В качестве электрохимически активированного раствора хлорида натрия используют, например, электрохимически активированный раствор хлорида натрия (пищевая соль ГОСТ 13830-84) с минерализацией 5 г/л - католит (рН 11,5-12,5), окислительно-восстановительный потенциал (ОВП)=-700…-820 мВ, х.с.э., приготовленный в электролизере проточного типа «Стел-4Н» (Бахир В.М. Электрохимическая активация / В.М.Бахир. - М.: ВНИИИМТ. - 1992. -2 ч. - 657 с.; Бахир В.М. Современные технические электрохимические системы для обеззараживания, очистки и активирования воды / В.М.Бахир. - М.:ВНИИИМТ. - 1999. - 84 с.). При более высоких концентрациях хлорида натрия на электродах в катодной камере электролизера накапливаются отложения гидроксидов щелочноземельных металлов, которые препятствуют процессу активации, при этом электроды перегреваются и преждевременно выходят из строя. Параметры получения электрохимически активированного раствора хлорида натрия приведены в таблице 3.
Оставшуюся часть электрохимически активированного раствора хлорида натрия смешивают с глиной в смесителе принудительного типа до получения однородной смеси, после чего полученную однородную смесь смешивают с опилками.
В качестве глины используют, например, сырье глинистое ГОСТ 21216.0-81 - ГОСТ 21216.4-81 Елшанского месторождения Саратовской области, свойства которого приведены в таблице 4.
Химический состав глинистого сырья
Полевой шпат 2
В качестве опилок используют, например, отходы от вторичной обработки древесины (форма кубическая или волокнистая) размером 1-2 мм хвойных и лиственных пород.
Всю массу перемешивают в течение 3-5 мин. Затем полученную смесь смешивают с полученным ранее цементным тестом, перемешивают 5-10 мин и укладывают в предварительно смазанную форму и уплотняют с помощью пригруза на виброплощадке в течение 2 мин. После чего уложенные в форму образцы термообрабатывают в пропарочной камере в течение 5-6 часов при 70°С и Wотн.=100% или выдерживают в нормальных условиях (Wотн.=100%, t=25°C) в течение 24 ч. После термообработки в пропарочной камере образцы распалубливают. В случае твердения в нормальных условиях распалубку производят через сутки. Термообработанные и распалубленные образцы помещают в сушильную камеру с температурой 100°С на 8-10 часов. Не подвергшиеся термообработке распалубленные образцы отверждают в условиях 100%-ной относительной влажности в течение 28 суток.
Полученные образцы конструкционного материала плотностью 600 кг/м3 отличаются повышенной (на 26%) прочностью по сравнению с прототипом.
название | год | авторы | номер документа |
---|---|---|---|
Состав и способ изготовления теплоизоляционного бетона | 2018 |
|
RU2759255C2 |
КОМПЛЕКСНАЯ ДОБАВКА К БЕТОННОЙ СМЕСИ | 2008 |
|
RU2369573C1 |
ПОЛИДИСПЕРСНАЯ ДРЕВЕСНО-ЦЕМЕНТНАЯ СМЕСЬ С НАНОМОДИФИКАТОРОМ | 2016 |
|
RU2641349C2 |
КОМПОЗИЦИЯ ДЛЯ ЛЕГКОГО ГРАНУЛИРОВАННОГО ЗАПОЛНИТЕЛЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2006 |
|
RU2327663C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПРОИЗВОДСТВА ТЕПЛОИЗОЛЯЦИОННОГО ЛЕГКОГО БЕТОНА | 2008 |
|
RU2377210C2 |
СОСТАВ ДЛЯ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО ПЕНОПОЛИСТИРОЛБЕТОНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2010 |
|
RU2447040C2 |
ДРЕВЕСНО-ЦЕМЕНТНАЯ СМЕСЬ | 2014 |
|
RU2569422C1 |
ДРЕВЕСНО-ТАЛЬКОХЛОРИТО-ЦЕМЕНТНАЯ СМЕСЬ | 2014 |
|
RU2570214C1 |
ДРЕВЕСНО-МРАМОРНО-ЦЕМЕНТНАЯ СМЕСЬ | 2014 |
|
RU2570215C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЛЕГКОВЕСНОГО СТРОИТЕЛЬНОГО МАТЕРИАЛА | 2008 |
|
RU2376259C1 |
Изобретение относится к промышленности строительных материалов и может быть использовано при получении теплоизоляционных бетонов, применяемых для изготовления ограждающих конструкций с высокими теплоизоляционными свойствами. Технический результат - повышение прочностных свойств материала при сохранении его теплоизоляционных характеристик и простоты состава бетонной смеси. Бетонная смесь содержит, мас.%: портландцемент 7-8, опилки 25-28, глина 35-40, ацетоноформальдегидная смола 1,0-1,5, электрохимически активированный раствор хлорида натрия остальное. 4 табл.
Бетонная смесь, включающая портландцемент, опилки и глину, отличающаяся тем, что она дополнительно содержит ацетоноформальдегидную смолу и электрохимически активированный раствор хлорида натрия при следующем соотношении компонентов, мас.%:
БЕТОННАЯ СМЕСЬ | 1998 |
|
RU2136624C1 |
АРБОЛИТОВАЯ СМЕСЬ | 2006 |
|
RU2307100C1 |
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОСТИ ЗАТВОРЕНИЯ ЦЕМЕНТА | 1999 |
|
RU2163582C2 |
СПОСОБ ПРИГОТОВЛЕНИЯ ЗАКЛАДОЧНОЙ СМЕСИ | 1995 |
|
RU2096627C1 |
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ ПОВЕРХНОСТЕЙ СТЕН ЗДАНИЙ | 1994 |
|
RU2104372C1 |
СПОСОБ ПОЛУЧЕНИЯ АКТИВИРОВАННОЙ ВОДЫ | 1996 |
|
RU2113411C1 |
Способ получения цементного камня | 1989 |
|
SU1705266A1 |
Способ активации воды затворения для цементных растворов и бетонов | 1983 |
|
SU1662943A1 |
Способ приготовления арболитовой смеси | 1986 |
|
SU1361125A1 |
Топчак-трактор для канатной вспашки | 1923 |
|
SU2002A1 |
Авторы
Даты
2011-11-20—Публикация
2010-04-14—Подача