СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ НА ИСТОЧНИК РАДИОИЗЛУЧЕНИЯ И ПЕЛЕНГАТОР Российский патент 2011 года по МПК G01S5/04 

Описание патента на изобретение RU2434240C1

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля и радиотехнической разведки для определения направления на источник радиоизлучения.

Известны способы пеленгации радиосигналов и пеленгаторы для их осуществления, реализующие корреляционно-интерферометрический метод пеленгования (патент РФ №2190236 от 13.09.2000 г., патент РФ №2201599 от 27.03.2002 г., патент РФ №2263327 от 27.10.2005 г., патент РФ №2341811 от 20.12.2008 г.).

Ограничением указанных способов и устройств является сравнительно узкая полоса частот одновременной разведки.

Известен способ обнаружения и определения пеленга и частоты ИРИ, реализующей корреляционную обработку на основе статического анализа спектральных плотностей энергии сигнала и шума (патент РФ №2190236 от 27.09.2002 г.). Ограничениями данного способа является достаточно большое время для проведения статического анализа.

Известны также амплитудные и фазовые пеленгаторы (а.с. СССР №1840389, опубл. 20.11.06 г. и заявки JP 2005062144, опубл. 10.03.05 г., US 2006158375, опубл. 20.07.06 г., CN 101206257, опубл. 25.06.08 г., WO 2005073749, опубл. 11.08.2005 г.).

Ограничениями амплитудных пеленгаторов являются недостаточно высокая точность пеленгования из-за ошибок, вызванных неидентичностью коэффициентов усиления приемных каналов пеленгатора, особенно в широком диапазоне частот.

Ограничениями фазовых пеленгаторов является сравнительно узкая полоса частот одновременной разведки и ограниченная зона однозначного пеленгования, что вызывает необходимость применения многобазовых методов пеленгования.

Наиболее близким к предлагаемому способу определения направления на источник радиоизлучения, входящим в группу изобретений, является способ амплитудного пеленгования источников радиоизлучений (патент РФ №2319975 от 20.03.2008 г.), в котором излучаемый сигнал принимают М идентичными антеннами, фокальные оси которых сдвинуты в плоскости пеленгования одна относительно другой таким образом, что диаграммы направленности смежных антенн пересекаются на уровне не более 3-х децибел, а все М антенн в сумме перекрывают сектор пеленгования 360°. Принятые сигналы распределяют по М идентичным приемным каналам, в каждом из которых поступивший в него сигнал усиливают, детектируют, результат детектирования усиливают в логарифмическом усилителе, измеряют мощность усиленных сигналов в канале с максимальным уровнем и в двух смежных с ним и по соотношению мощностей измеренных сигналов определяют направление на источник излучения, расчет направления φи на источник излучаемого сигнала осуществляют по формулам:

φиN+β·sign(PN+1-PN-1),

где β - модуль углового отклонения направления на пеленгуемый источник излучения от фокальной оси антенны приемного канала с максимальным уровнем сигнала;

δ1, δ2, δ3 - модуль нормированного относительного (в децибелах) коэффициента усиления антенны при угловых отклонениях направления прихода сигнала от ее фокальной оси θ0, 4/3 θ0 и 2/3 θ0 соответственно;

N - номер приемного канала с максимальным уровнем сигнала;

Pn, Pn+1, Pn-1 - относительные, отсчитанные от уровня чувствительности в децибелах уровни мощности принятого сигнала в N-м приемном канале и в смежных с ним справа и слева соответственно;

φN - направление фокальной оси антенны N-го приемного канала.

Данный способ выбран в качестве прототипа.

Ограничениями указанного способа являются:

- низкая чувствительность, так как для обнаружения сигнала одновременно в трех смежных каналах РПУ необходимо иметь запас по чувствительности пеленгатора не менее 15 дБ;

- при работе в широком диапазоне частот и большом динамическом диапазоне входных сигналов возможно снижение точности пеленгования за счет неидентичности коэффициентов усиления различных каналов РПУ и изменения ширины ДН антенн, а следовательно, и соотношения уровней сигналов в соседних каналах;

- достаточно высокая сложность реализации из-за большого числа приемных каналов.

Наиболее близким к предлагаемому пеленгатору по принципу построения является пеленгатор по патенту DE 3347068 от 26.03.92 г., схема которого приведена на фиг.1. Пеленгатор содержит ненаправленную антенну 1, многоканальное радиоприемное устройство 2, делитель мощности 3, направленные пеленгационные антенны 4, смесители 5 и вычислительное устройство 6.

Принцип работы пеленгатора состоит в следующем. Всенаправленная антенна 1 и пеленгационные антенны 4 перекрывают весь рабочий диапазон частот. Многоканальное радиоприемное устройство 2 содержит m смежных частотных каналов, перекрывающих весь рабочий диапазон частот. При обнаружении источника радиоизлучения всенаправленной антенной 1 и j-м частотным каналом многоканального радиоприемного устройства 2 сигнал выделяется, усиливается и поступает через делитель мощности 3 на все смесители 5, которые настраиваются на частоту принятого сигнала. Вычислительное устройство 6 определяет направление на источник радиоизлучения известным моноимпульсным амплитудным методом по соотношению уровней сигналов в соседних пеленгационных каналах.

Данный пеленгатор выбран в качестве прототипа заявленного пеленгатора.

Ограничением данного пеленгатора является:

- низкое быстродействие, так как определение направления на каждый из обнаруженных всенаправленной антенной источников радиоизлучения осуществляется последовательно во времени;

- низкая чувствительность, так как чувствительность пеленгатора определяется каналом приема с всенаправленной антенной с низким коэффициентом усиления, а не направленной пеленгационной антенной, у которой коэффициент усиления существенно выше.

Основной задачей, на решение которой направлены заявляемый способ определения направления на источник радиоизлучения и пеленгатор, является улучшение основных технических характеристик.

Единым техническим результатом, достигаемым при осуществлении заявленной группы изобретений, является повышение чувствительности и точности пеленгования, а также быстродействия.

Указанный технический результат достигается тем, что в известном способе амплитудного пеленгования источников радиоизлучений, при котором излучаемый сигнал принимают пеленгационной антенной, состоящей из М идентичных антенн, фокальные оси которых сдвинуты друг относительно друга в плоскости пеленгования таким образом, что смежные диаграммы направленности антенн образуют идентичные пеленгационные характеристики, а в сумме М антенн перекрывают всю зону наблюдения 360°, согласно изобретению принятые сигналы распределяют по трем идентичным приемным устройствам, при этом обзор всей зоны наблюдения осуществляют электронным переключением М выходов пеленгационной антенны ко входам трех приемных устройств таким образом, что ко входам приемных устройств всегда на время определения направления на источник радиоизлучения подключены одновременно три смежные антенны, в каждом приемном устройстве принятые сигналы распределяют по идентичным частотным поддиапазонам, в каждом из которых сигналы усиливают, детектируют, результат детектирования усиливают логарифмическим видеоусилителем, измеряют мощность усиленных сигналов с учетом поправок на неидентичность коэффициентов передачи приемных устройств, которую определяют и запоминают при периодической калибровке приемных устройств в каждом поддиапазоне частот и в динамическом диапазоне входных сигналов, по соотношению мощностей определяют частотный поддиапазон, в котором принят сигнал, а для сигналов, имеющих максимальный уровень в приемном устройстве, подключенном к центральной из трех смежных антенн, определяют направление βi на i-й источник радиоизлучения по пеленгационным характеристикам, образованным центральной и одной из смежных антенн (правой или левой), с большей мощностью сигнала, для j-го частотного поддиапазона, в котором принят сигнал, по формулам:

βiРСНk±Δβi,

где βPCHk, градус - значение пеленга для равносигнального направления выбранной k-й пеленгационной характеристики.

Значение +Δβ принимают при определении направления по пеленгационной характеристике, образованной центральной и левой смежными антеннами, а - Δβ - при определении направления по пеленгационной характеристике, образованной центральной и правой смежными антеннами.

Δβi, градус=S(fj)·ΔPi,

где Δβi - отклонение направления на i-й источник радиоизлучения от равносигнального направления выбранной k-й пеленгационной характеристики;

S(fj), градус/дБ - крутизна пеленгационной характеристики в j-м частотном поддиапазоне:

ΔPi, дБ=Pц-Pл(п)±ΔPk(fj,Pi),

где Рц, Рл(п) - относительный уровень мощности сигнала в приемном устройстве, подключенном соответственно к центральной, левой (или правой) из трех смежных антенн;

ΔPk(fj,Pi), дБ - неидентичность коэффициентов передачи приемных устройств, подключенных к центральной и левой (или правой) из трех смежных антенн в j-м частотном поддиапазоне при уровне мощности, соответствующей мощности входного сигнала.

Значение ΔPk(fj,Pi) и знак плюс или минус определяют при калибровке приемных устройств по сигналам синтезатора рабочих частот.

Очевидно, что для определения направления достаточно двух смежных каналов пеленгационной антенны. В предложенном способе используют три смежных канала, так как левый и правый смежные каналы дополнительно используются для компенсации приема по ближним боковым лепесткам центральной антенны, уменьшая тем самым вероятность появления ложных пеленгов при большом уровне входных сигналов.

Структура диаграмм направленности пеленгационной антенны, поясняющая сущность способа определения направления на источник радиоизлучения, приведена на фиг.2.

Указанный технический результат достигается также тем, что в пеленгаторе, содержащем многолучевую пеленгационную антенну, состоящую из М идентичных антенн, фокальные оси которых сдвинуты друг относительно друга в плоскости пеленгования таким образом, что диаграммы направленности смежных антенн образуют идентичные пеленгационные характеристики, а в сумме диаграммы направленности М антенн перекрывают всю зону наблюдения 360°, ненаправленную антенну компенсации приема по боковым лепесткам, четыре идентичных приемных устройства, каждое из которых представляет собой многоканальный приемник и устройство анализа и управления, согласно изобретению выходы многолучевой пеленгационной антенны через переключатель, имеющий М входов и три выхода и через направленный ответвитель подключены ко входам трех приемных устройств, причем переключатель при любых переключениях обеспечивает одновременное подключение выходов трех смежных антенн, ненаправленная антенна также через направленный ответвитель подключена к четвертому приемному устройству, а выходы всех четырех приемных устройств подключены ко входам устройства анализа и управления, управляющие выходы которого подключены ко всем приемным устройствам, переключателю и синтезатору рабочих частот, выход которого через направленный ответвитель подключен ко входам всех четырех приемных устройств.

Сущность изобретения поясняется чертежами, на которых приведены

на фиг 1 - структурная схема пеленгатора прототипа;

на фиг 2 - структура диаграмм направленности пеленгационной антенны;

на фиг.3 - структурная схема пеленгатора;

на фиг.4 - структурная схема приемного устройства;

на фиг.5 - структурная схема усилителя преобразователя.

Поскольку заявленный способ реализован в работе устройства, то подробное его описание приведено при описании работы пеленгатора.

Пеленгатор (фиг.3) содержит многолучевую пеленгационную антенну 1, ненаправленную антенну 2. Выходы пеленгационной антенны 1 через переключатель 3 и направленный ответвитель 4 подключены к соответствующим входам трех многоканальных приемных устройств 5, выход ненаправленной антенны 2 подключен через направленный ответвитель 4 ко входу 4-го приемного устройства 5, выходы всех приемных устройств 5 подключены к устройству анализа и управления (УАУ) 7, управляющие выходы которого подключены к переключателю 3, всем приемным устройствам 5 и синтезатору рабочих частот 6, выход которого через направленный ответвитель 4 подключен ко входам всех приемных устройств 5.

Многолучевая пеленгационная антенна 1 состоит из М идентичных антенн, фокальные оси которых сдвинуты друг относительно друга в плоскости пеленгования таким образом, что смежные диаграммы направленности антенн образуют идентичные пеленгационные характеристики. В сумме М антенн перекрывают в плоскости пеленгования всю зону наблюдения 360°. Поскольку ширина парциальной ДН в широком диапазоне частот может изменяться, крутизна пеленгационной характеристики (ПХ) зависит от несущей частоты.

Под крутизной ПХ понимается зависимость соотношения мощностей в пеленгационных каналах от отклонения от равносигнального направления ПХ.

Пеленгационная антенна 1 может быть выполнена в виде М идентичных рупорных, логопериодических или других типов антенн, обеспечивающих требуемую структуру ДН.

Ненаправленная антенна 2 имеет круговую ДН и может быть выполнена в виде биконической антенны.

Многолучевая пеленгационная антенна 1 и ненаправленная антенна 2 перекрывают весь рабочий диапазон частот.

Переключатель 3 содержит М входов по числу выходов многолучевой пеленгационной антенны и три выхода и может быть выполнен на основе 3-х переключателей 4×1, т.е. имеющих 4 входа и один выход. В состав переключателя входит устройство управления, которое обеспечивает отпирание (запирание) соответствующих каналов переключателя 3 по командам от устройства анализа и управления 7. Переключение должно осуществляться таким образом, чтобы всегда ко входам приемных устройств 5 были одновременно подключены три смежных антенны многолучевой пеленгационной антенны 1.

Направленный ответвитель 4 предназначен для подачи сигналов синтезатора рабочих частот 6 на входы всех приемных устройств 5 с целью их калибровки в диапазоне частот. Ослабление направленного ответвителя 4 по направлениям 1-1, 2-2, 3-3, 4-4 минимально с целью не допустить снижения чувствительности пеленгатора. Ослабление сигнала по направлениям 5-1, 5-2 5-3, 5-4 - не менее 20 дБ с целью исключения потерь мощности сигнала ИРИ.

Каждое из приемных устройств 5 представляет собой супергетеродинный двухступенчатый многоканальный приемник. Структурная схема одного приемного устройства 5 приведена на фиг.4.

В состав одного приемного устройства 5 входит усилитель преобразователь 8, детектор логарифмический многоканальный 9, устройство предварительной обработки 10 и устройство буферное 11.

Устройство (УАУ) 7 содержит устройство управления переключателем 3, синтезатором рабочих частот 6 и приемными устройствами 5, а также вычислительное устройство. УАУ 7 - это многопроцессорная вычислительная структура, выполненная на основе сигнальных микропроцессорных устройств и программируемых логических интегральных микросхем (PLIC) (например, типа THS32DVC5402A, ф. Texas Instruments, XC4VLX60FF668 ф.Xilinx, AD9211 ф. Analog Devices).

Синтезатор рабочих частот 6 выполнен на основе серийно выпускаемых генераторов, управляемых напряжением (например V585ME06 ф-Z - comm. США, K03-2700-433-R ф.Мет-Circuits, США) и обеспечивает формирование калибровочных СВЧ-сигналов во всем рабочем диапазоне частот и в динамическом диапазоне входных сигналов.

Пеленгатор работает следующим образом.

Обзор зоны наблюдения осуществляется за счет электронного переключения выходов многолучевой пеленгационной антенны 1, причем таким образом, что всегда к приемным устройствам 5 одновременно подключены три антенны, имеющие смежные диаграммы направленности.

Пеленгатор работает в автоматическом режиме, зона наблюдения задается извне, например с пульта управления станции радиотехнической разведки, куда входит пеленгатор. Если задана зона наблюдения, которая перекрывается одной парциальной диаграммой направленности пеленгационной антенны 1, то переключения не происходит. В этом режиме осуществляется постоянное наблюдение за отдельными источниками излучения. Если зона наблюдения не перекрывается одной парциальной диаграммой направленности пеленгационной антенны 1, то происходит периодическое переключение выходов пеленгационной антенны 1 по изложенному выше алгоритму. Время, в течение которого зона наблюдения не переключается, определяется исходя из необходимости уверенного обнаружения ИРИ и может составлять ориентировочно не более 20 мс.

Сигнал ИРИ, принятый пеленгационной антенной 1 через переключатель 3 и направленный ответвитель 4, поступает на вход усилителя преобразователя 8 приемного устройства 5.

Сигнал ИРИ, принятый ненаправленной антенной 2, поступает через направленный ответвитель 4 на вход четвертого приемного устройства 5.

Структурная схема усилителя преобразователя приведена на фиг.5.

Сигнал, поступивший на усилитель преобразователь 8 усиливается в усилителе 12 и через разветвитель 13 и полосовые фильтры 14, обеспечивающие разделение по частотным поддиапазонам с полосой Δfi, поступает на один из преобразователей 15, где преобразуется в промежуточную частоту fn, далее через делитель мощности 16 поступает одновременно на детекторы 17 и быстродействующий коммутатор 19, продетектированный сигнал поступает на устройство управления 18, которое открывает коммутатор 19 и СВЧ-сигнал через сумматор 20 подается на детектор логарифмический многоканальный 9. Сигналы "КСК" (признак наличия сигнала ИРИ) через устройство управления 18 подаются на УПО 10 для определения несущей частоты источника излучения. Коммутаторы 19 могут управляться также извне от устройства анализа и управления 7 через устройство буферное 11.

Усилитель преобразователь 8 является 1-й ступенью супергетеродинного многоканального приемника. Коммутаторы 19 используются для ограничения полосы разве дуемых частот по командам от УАУ 7. Если коммутатор 19 закрыт командой от УАУ 7, сигнал дальше не проходит, если команда от УАУ 7 на запирание отсутствует, то коммутатор 19 открывается приходящим сигналом. Признак отпирания коммутатора 19 (сигнал "КСК") используется как признак наличия сигнала в данном поддиапазоне частот.

Детектор логарифмический многоканальный 9 представляет собой вторую ступень супергетеродинного многоканального приемника 5.

В детекторе логарифмическом многоканальном 9 сигнал промежуточной частоты вновь усиливается, диапазон частот Δfi разделяется с помощью полосовых фильтров на одинаковые поддиапазоны Δf2. Далее СВЧ-сигнал детектируется, усиливается логарифмическими видеоусилителями и подается на вход соответствующего канала устройства предварительной обработки 10 (УПО). Количество входов УПО 10 равно количеству выходов детектора логарифмического многоканального 9. В каждом канале УПО 10 с помощью АЦП происходит преобразование видеосигнала в цифровой код и сравнение кодов амплитуд сигналов ИРИ. По номеру канала детектора логарифмического многоканального 9 и признаку о срабатывании коммутатора усилителя преобразователя 8 (сигнал "КСК") определяется значение несущей частоты ИРИ fi.

Информация о коде несущей частоты и амплитуде сигнала поступает через устройство буферное 11 на УАУ 7. В УАУ 7 производится сравнение уровней сигналов ИРИ для значения fi, в том числе и для сигналов, принятых ненаправленной антенной 2, и определяется номер приемного устройства 5 с максимальной амплитудой сигнала. Если сигнал имеет максимальную амплитуду в канале приемного устройства 5, подключенному к центральной из 3-х смежных пеленгационных антенн 1, он принимается к обработке. В противном случае обработка прекращается. Значение пеленга i-го источника радиоизлучения β1 определяется в УАУ 7 моноимпульсным амплитудным методом по формулам:

βiрсн±Δβi,

где βрсн (градус) - значение пеленга для равносигнального направления выбранной пеленгационной характеристики, значение (+Δβi) принимают при определении направления по пеленгационной характеристике, образованной центральной и левой смежными антеннами, а (-Δβi) - при определении направления по пеленгационной характеристике, образованной центральной и правой смежными антеннами.

Δβi, градус=S(fj)·ΔРi,

где Δβi - отклонение направления на i-й ИРИ от равносигнального направления выбранной пеленгационной характеристике;

S(fj), градус/дБ - крутизна пеленгационной характеристики в j-м частотном поддиапазоне.

ΔPi, дБ=Рцл(п)±ΔPk(fj,Pi),

где Pц, Рл(п), дБ - относительный уровень мощности сигнала в приемном устройстве, подключенном к центральной, левой (или правой) из трех смежных антенн;

ΔPk(fj,Pi) - неидентичность коэффициентов передачи приемных устройств, подключенных к центральной и левой (или правой) из трех смежных антенн в j-м частотном поддиапазоне, при уровне мощности, соответствующей мощности входного сигнала.

Значение ΔP(fj,Pi) и знак плюс или минус определяют при калибровке по сигналам синтезатора рабочих частот.

Таким образом АР определяется с учетом периодической калибровки трактов приемных устройств 5 с помощью сигналов синтезатора частот 6, что позволяет уменьшить погрешность пеленгования, вызванную неидентичностью коэффициента передачи приемных устройств 5 в широком диапазоне частот и при большом динамическом диапазоне входных сигналов. Поправочные коэффициенты для расчета ΔР после проведения калибровки запоминаются в УАУ 7. Калибровка производится в каждом поддиапазоне частот с дискретой канала детектора логарифмического многоканального 10 Δf2. Количество дискрет в динамическом диапазоне определяется характеристиками приемных устройств 5.

Периодичность калибровки выбирается такой, чтобы она не влияла на основную работу пеленгатора, и может составлять десятки минут.

То, что калибровка позволяет уменьшить погрешность определения направления на ИРИ за счет неидентичности коэффициента передачи приемных трактов, подтверждаются следующими выкладками.

Допустим, что

f(θ1) и f(θ2) - функции, описывающие парциальные диаграммы направленности пеленгационной антенны;

К1, К2 - коэффициенты усиления приемных каналов 1 и 2;

Δu - сигнал, несущий информацию об угле прихода.

Можно показать, что при условии, что К1, К2 - линейные функции, а погрешность логарифмирования незначительна

Δu'=lgk1-lgk2 - ошибка, обусловленная неидентичностью коэффициентов передачи приемных каналов.

При подаче калибровочного сигнала

В результате вычитания сигналов 1 и 2 получаем

Δu=lgf(θ1)-lgf(θ2)+lgk1(fc)-lgk2(fc)-lgk2(fk)+lgk2(fk)

Δu'=lgk1(fc)-lgk1(fk)+lgk2(fc)-lgk2(fk).

Если k1 и k2 на частотах сигнала fc и калибровки fk отличаются незначительно, то ошибка за счет разноканальности уменьшается.

Значение пеленга β усредняется за время наблюдения в УАУ 7 и выдается внешнему потребителю.

Если в зоне наблюдения несколько ИРИ, то пеленги определяются по каждому из них, причем обработка сигналов всех ИРИ проводится параллельно. После обработки всех сигналов происходит переключение и по изложенному выше алгоритму осуществляется обработка сигналов ИРИ в новой пространственной зоне наблюдения.

Таким образом, если зона наблюдения не перекрывается одной парциальной диаграммой направленности пеленгационной антенны 1, то происходит переключение выходов пеленгационной антенны 1 до тех пор, пока вся зона наблюдения не будет просмотрена, далее цикл повторяется.

Похожие патенты RU2434240C1

название год авторы номер документа
ШИРОКОПОЛОСНАЯ СТАНЦИЯ РАДИОТЕХНИЧЕСКОЙ РАЗВЕДКИ С ВЫСОКОЙ ЧУВСТВИТЕЛЬНОСТЬЮ 2008
  • Вернигора Владимир Николаевич
  • Лопатько Николай Пантелеевич
  • Перунов Юрий Митрофанович
  • Ступин Валерий Евгеньевич
  • Стуров Александр Григорьевич
RU2390946C2
Способ повышения точности пеленгования источников радиоизлучения обнаружителем-пеленгатором с многошкальной антенной системой 2019
  • Артемов Михаил Леонидович
  • Афанасьев Олег Владимирович
  • Воропаев Дмитрий Иванович
  • Сличенко Михаил Павлович
  • Абрамова Евгения Леонидовна
RU2713235C1
Многоканальный пеленгатор радиосигналов ВЧ диапазона 2020
  • Бубневич Ирина Владимировна
  • Петряевский Михаил Михайлович
  • Понкратьев Алексей Иванович
  • Румянцев Александр Иванович
RU2752249C2
ПЕЛЕНГАЦИОННОЕ УСТРОЙСТВО СВЧ И ЕГО ВАРИАНТ 2004
  • Демин Андрей Леонидович
  • Корнев Владимир Валентинович
  • Мираков Константин Ервандович
  • Пименов Николай Вячеславович
RU2269791C1
СПОСОБ ПЕЛЕНГАЦИИ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ 2012
  • Пархоменко Николай Григорьевич
  • Стуров Александр Григорьевич
  • Токарев Валерий Анатольевич
  • Устинов Владимир Александрович
RU2510708C1
СПОСОБ ПЕЛЕНГОВАНИЯ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ 2015
  • Аверьянов Андрей Викторович
  • Емельянов Роман Валентинович
  • Строцев Андрей Анатольевич
RU2603356C1
ПЕЛЕНГАЦИОННОЕ УСТРОЙСТВО (ВАРИАНТЫ) 2010
  • Гаврилов Юрий Андреевич
  • Ландсберг Иван Леонович
  • Федоренко Иван Александрович
RU2504796C2
Способ адаптивного пространственно-многоканального обнаружения и пеленгования двух частотно-неразделимых источников радиоизлучения 2020
  • Артемов Михаил Леонидович
  • Афанасьев Олег Владимирович
  • Воропаев Дмитрий Иванович
  • Сличенко Михаил Павлович
  • Ильин Михаил Юрьевич
  • Серебрянникова Ольга Анатольевна
RU2732504C1
СПОСОБ АМПЛИТУДНОГО ПЕЛЕНГОВАНИЯ ИНТЕРФЕРИРУЮЩИХ РАДИОИЗЛУЧЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗУЮЩЕЕ 2019
  • Севидов Владимир Витальевич
  • Симонов Алексей Николаевич
  • Григорьев Виталий Владимирович
RU2722715C1
СПОСОБ ПЕЛЕНГАЦИИ РАДИОСИГНАЛОВ И ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Андрианов Владимир Игоревич
  • Викторов Владимир Александрович
  • Гудков Леонид Алексеевич
  • Киселев Сергей Петрович
  • Липатников Валерий Алексеевич
  • Царик Олег Владимирович
RU2383897C1

Иллюстрации к изобретению RU 2 434 240 C1

Реферат патента 2011 года СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ НА ИСТОЧНИК РАДИОИЗЛУЧЕНИЯ И ПЕЛЕНГАТОР

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля и радиотехнической разведки для определения направления на источник радиоизлучения. Достигаемый технический результат изобретения повышение чувствительности и точности пеленгования, а также быстродействия. Сущность способа состоит в том, что излучаемый сигнал принимают пеленгационной антенной, состоящей из М идентичных антенн, фокальные оси которых сдвинуты относительно друг друга в плоскости пеленгования таким образом, что смежные диаграммы направленности антенн образуют идентичные пеленгационные характеристики, а в сумме М антенн перекрывают всю зону наблюдения 360°, принятые сигналы распределяют по трем идентичным приемным устройствам, при этом обзор всей зоны наблюдения осуществляют электронным переключением М выходов пеленгационной антенны ко входам трех приемных устройств таким образом, что ко входам приемных устройств на время определения направления на источник радиоизлучения всегда подключены одновременно три смежные антенны, в каждом приемном устройстве принятые сигналы распределяют по идентичным частотным поддиапазонам, в каждом из которых сигналы усиливают, детектируют, результат детектирования усиливают логарифмическим видеоусилителем, измеряют мощность усиленных сигналов с учетом поправок на неидентичность коэффициентов передачи приемных устройств, которую определяют и запоминают при периодической калибровке приемных устройств в каждом поддиапазоне частот и в динамическом диапазоне 2 входных сигналов, по соотношению мощностей определяют частотный поддиапазон, в котором принят сигнал, а для сигналов, имеющих максимальный уровень в приемном устройстве, подключенном к центральной из трех смежных антенн, определяют направление на источник радиоизлучения по пеленгационным характеристикам, образованным центральной и одной из смежных антенн (правой или левой), в которой мощность сигнала больше, по соответствующим формулам. При расчетах значение крутизны пеленгационной характеристики принимают с учетом частотного поддиапазона, в котором принят сигнал. Пеленгатор содержит многолучевую пеленгационную антенну, состоящую из М идентичных антенн, ненаправленную антенну, четыре идентичных приемных устройства (три для пеленгации и одно для компенсации приема по боковым лепесткам пеленгационных антенн), каждое из которых представляет собой многоканальный приемник, переключатель, направленный ответвитель, синтезатор рабочих частот и устройство анализа и управления. 2 н.п. ф-лы, 5 ил.

Формула изобретения RU 2 434 240 C1

1. Способ определения направления на источник радиоизлучения, при котором излучаемый сигнал принимают пеленгационной антенной, состоящей из М идентичных антенн, фокальные оси которых сдвинуты друг относительно друга в плоскости пеленгования таким образом, что смежные диаграммы направленности антенн образуют идентичные пеленгационные характеристики, а в сумме М антенн перекрывают всю зону наблюдения 360°, отличающийся тем, что принятые сигналы распределяют по трем идентичным приемным устройствам, при этом обзор всей зоны наблюдения 360° осуществляют электронным переключением М выходов пеленгационной антенны ко входам трех приемных устройств, причем переключение осуществляют таким образом, что ко входам приемных устройств на время определения направления на источник радиоизлучения всегда одновременно подключены три смежные антенны, а в каждом приемном устройстве принятые сигналы распределяют по идентичным частотным поддиапазонам, в каждом из частотных поддиапазонов сигналы усиливают, детектируют, результат детектирования усиливают логарифмическим видеоусилителем, измеряют мощность усиленных сигналов с учетом поправок на неидентичность коэффициентов передачи приемных устройств, которую определяют и запоминают при периодической калибровке приемных устройств по сигналам синтезатора частот в каждом поддиапазоне частот и в динамическом диапазоне входных сигналов, затем по соотношению измеренных мощностей усиленных сигналов определяют частотный поддиапазон, в котором принят сигнал, и для сигналов, имеющих максимальный уровень в приемном устройстве, подключенном к центральной из трех смежных антенн, определяют направление βi на i-й источник радиоизлучения по пеленгационным характеристикам, образованным центральной и одной из смежных антенн (правой или левой), с большим уровнем сигнала, со значением крутизны для j-го частотного поддиапазона, в котором принят сигнал, по формулам:
βiрсн±Δβi,
где Ррсн (градус) - значение пеленга для равносигнального направления выбранной пеленгационной характеристики, значение (+Δβi) принимают при определении направления по пеленгационной характеристике, образованной центральной и левой смежными антеннами, a (-Δβi) - при определении направления по пеленгационной характеристике, образованной центральной и правой смежными антеннами, Δβi, градус=S(fj)·ΔPi,
где Δβi - отклонение направления на i-й источник радиоизлучения от равносигнального направления выбранной пеленгационной характеристики,
S(fj), градус/дБ - крутизна пеленгационной характеристики в j-м
частотном поддиапазоне,
ΔPi, дБ=Рцл(п)±ΔРk(fj,Pi),
где Рц, Р л(п), дБ - относительный уровень мощности сигнала в приемном устройстве, подключенном к центральной, левой (или правой) из трех смежных антенн,
ΔPk(fj,Pi) - неидентичность коэффициентов передачи приемных устройств, подключенных к центральной и левой (или правой) из трех смежных антенн в j-м частотном поддиапазоне, при уровне мощности, соответствующей мощности входного сигнала, причем значение ΔP((fj,Pi) и знак плюс или минус определяют при калибровке по сигналам синтезатора рабочих частот.

2. Пеленгатор, содержащий многолучевую пеленгационную антенну, состоящую из М идентичных антенн, фокальные оси которых сдвинуты друг относительно друга в плоскости пеленгования таким образом, что диаграммы направленности смежных антенн образуют идентичные пеленгационные характеристики, а в сумме диаграммы направленности М антенн перекрывают всю зону наблюдения 360°, ненаправленную антенну компенсации приема по боковым лепесткам, четыре идентичных приемных устройства, каждое из которых представляет собой многоканальный приемник, и устройство анализа и управления, отличающийся тем, что выходы многолучевой пеленгационной антенны через переключатель, имеющий М входов и три выхода, и через направленный ответвитель подключены ко входам трех приемных устройств, причем переключатель при любых переключениях обеспечивает одновременное подключение выходов трех смежных антенн, ненаправленная антенна также через направленный ответвитель подключена к четвертому приемному устройству, а выходы всех четырех приемных устройств подключены ко входам устройства анализа и управления, управляющие выходы которого подключены ко всем четырем приемным устройствам, переключателю и синтезатору рабочих частот, выход которого через направленный ответвитель подключен ко входам всех четырех приемных устройств.

Документы, цитированные в отчете о поиске Патент 2011 года RU2434240C1

СПОСОБ АМПЛИТУДНОГО ПЕЛЕНГОВАНИЯ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЙ 2006
  • Дорух Игорь Георгиевич
  • Лопатинский Николай Викторович
RU2319975C1
СПОСОБ ПЕЛЕНГАЦИИ РАДИОСИГНАЛОВ И МНОГОКАНАЛЬНЫЙ ПЕЛЕНГАТОР 1996
  • Рембовский А.М.
  • Кондращенко В.Н.
RU2096797C1
СПОСОБ ПЕЛЕНГАЦИИ РАДИОСИГНАЛОВ И МНОГОКАНАЛЬНЫЙ ПЕЛЕНГАТОР 2002
  • Артемов М.Л.
  • Ашихмин А.В.
  • Дмитриев И.С.
  • Москалёва Е.А.
  • Николаев В.И.
RU2258241C2
СПОСОБ ПЕЛЕНГАЦИИ РАДИОСИГНАЛОВ И МНОГОКАНАЛЬНЫЙ ПЕЛЕНГАТОР 1999
  • Ашихмин А.В.
  • Виноградов А.Д.
  • Кондращенко В.Н.
  • Рембовский А.М.
RU2144200C1
DE 4130699 А1, 25.03.1994
US 6327314 В1, 04.12.2001
US 6421007 B1, 16.07.2002
WO 2010122370 A1, 28.10.2010.

RU 2 434 240 C1

Авторы

Вернигора Владимир Николаевич

Лопатько Николай Пантелеевич

Половинкин Петр Анатольевич

Толстоконев Николай Александрович

Даты

2011-11-20Публикация

2010-11-01Подача