УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ И НАПРЯЖЕНИЙ ЛЕДЯНОГО ПОКРОВА Российский патент 2011 года по МПК G01B7/16 

Описание патента на изобретение RU2437057C1

Изобретение относится к области исследования физико-механических свойств льда и, в частности, ледотехнике и предназначено для измерения относительных деформаций и напряжений ледяного покрова, вызванных природными явлениями и техническими воздействиями.

Известны кварцевые штанговые линейные деформометры для измерения относительных деформаций земной коры, вызываемых приливными волнами и землетрясениями [1, 2]. Такие устройства устанавливают в специально построенных шахтах, где климатические влияния на работу прибора практически отсутствуют. При этом один конец штанги заделывается в бетонное основание, а свободный конец покоится на подвесной опоре у другого основания. Оба основания заделываются в скальный грунт шахты.

Недостатками устройства являются невозможность определения главных деформаций грунта и отсутствие компенсации температурных колебаний воздуха. Кроме того, заделка кварцевой штанги в бетонном основании и способ вмонтирования основания в грунт неприемлемы для ледовых условий эксплуатации устройства.

Известно устройство для измерения деформаций льда [3], которое содержит кварцевую штангу, один конец которой жестко связан с основанием, вмороженным в лед. У свободного конца штанги вмораживается стойка с термокомпенсационным штоком, на котором крепится преобразователь перемещений свободного конца кварцевой штанги. Недостатком устройства является невозможность определить главные деформации в плоскости льдины и тем самым определить эллипс деформации и азимут источника деформирования льда.

Известен датчик давления [4] во льду, выполненный в виде упругого полого шара, в котором в трех взаимно перпендикулярных направлениях расположены параметрические преобразователи, каждый из них закреплен в двух точках, расположенных диаметрально противоположно на внутренней стенке шара. При помощи такого устройства можно определить эллипс напряжений в ледяном покрове и азимут на источник напряжений. Недостатком датчика давления является невозможность определения деформаций льда.

Известно устройство для измерения деформаций льда [5], взятое за прототип, которое снабжено тремя кварцевыми штангами, закрепленными в постаменте, вмороженном в лед. Штанги расходятся под углами 120° в сторону стоек, также вмороженных в лед. На стойках закреплены термокомпенсационные штоки с параметрическими датчиками перемещения свободных концов штанг. Такая установка штанг и закрепление их концов обеспечивает определение главных деформаций в плоскости льдины и азимута источника деформирования льда в непрерывном режиме работы на основании следующих формул:

где εφ - деформация в направлении, образующем с осью X произвольно выбранной системы координат X, Y угол φ: εI и εII - главные деформации (максимальная и минимальная) в направлении главных осей I и II, образующие с осью X углы φ0 и (φ0-π/2) соответственно.

;

где ε1, ε2, ε3 - измеренные деформации на каждой штанге. Кроме того, устройство снабжено приспособлением, которое позволяет проводить калибровку без перерыва работы деформометра. Это обеспечивает гидравлический трансформатор, расположенный на постаменте, с тремя рабочими штоками, упирающимися в хомуты с зажатыми в них концами кварцевых штанг. Сами хомуты прижимаются четырьмя плоскими пружинами к упорам, жестко скрепленным с постаментом. Четвертый задающий шток, расположенный в верхней части гидротрансформатора, вводится в камеру гидротрансформатора микрометрическим винтом. Таким образом, осуществляется подача калибровочного сигнала в виде ступени на все три штанги. Недостатком прототипа является то, что устройство не предназначено для измерения напряжений во льду.

Целью изобретения является обеспечение определения напряженно-деформированного состояния льда на основании одновременного измерения главных напряжений и главных деформаций совместно с определением азимута источника деформирования льда; определение модуля упругости льда; определение анизотропного состояния льда; определение затухания напряжений в ледяном покрове.

Указанный результат достигается тем, что постамент и стойки выполнены в виде полых жестких цилиндров с дном полусферической формы. Такая конфигурация минимизирует концентрацию напряжений при их замораживании в лед. В постаменте располагаются ниже поверхности льда три параметрических датчика, каждый из которых закреплен внутри цилиндра в двух точках, расположенных диаметрально противоположно в горизонтальной плоскости. При этом оси чувствительности датчиков расходятся под углами 120° и совпадают с направлением осей чувствительности кварцевых штанг устройства. Такая установка параметрических датчиков в постаменте обеспечивает определение главных напряжений и азимута источника напряженного состояния льда в плоскости льдины на основании следующих формул:

,

где σψ - напряжение в направлении, образующем с осью X произвольно выбранной системы координат X, Y угол ψ: σI и σII - главные напряжения (максимальное и минимальное) в направлении главных осей I и II, образующие с осью X углы ψ0 и (ψ0-π/2) соответственно.

;

где σ1, σ2, σ3 - измеренные напряжения на каждом параметрическом датчике, установленном внутри постамента.

По измеренным главным напряжениям и деформациям определяются модули упругости льда:

;

,

где EI, EII - модули упругости в направлении максимальных и минимальных напряжений и деформаций соответственно. Это также дает возможность характеризовать анизотропность ледяного покрова.

В каждой стойке, вмороженной у свободных концов кварцевых штанг, ниже поверхности льда устанавливается параметрический датчик, закрепленный внутри цилиндра в двух точках, расположенных диаметрально противоположно в горизонтальной плоскости. При этом ось чувствительности каждого датчика, расположенного в стойке, совпадает с осью чувствительности своей кварцевой штанги и осью чувствительности одного параметрического датчика, установленного в постаменте. Такое расположение параметрических датчиков в постаменте и в стойках обеспечивает определение затухания напряжений на базе устройства.

На фиг.1 представлен вид устройства в разрезе по одной из трех кварцевых штанг 1. Постамент 2, выполненный в виде полого жесткого цилиндра с дном полусферической формы, вморожен в ледяной покров. Внутри постамента 2 установлен параметрический датчик 3 (два других датчика не указаны), закрепленный внутри цилиндра в двух точках, расположенных диаметрально противоположно в горизонтальной плоскости. У свободного конца кварцевой штанги 1 вморожена стойка 4 в виде полого жесткого цилиндра с дном полусферической формы. Внутри стойки 4 установлен параметрический датчик 5, закрепленный внутри цилиндра в двух точках, расположенных диаметрально противоположно в горизонтальной плоскости. На постаменте 2 неподвижно установлена плита 6, к которой при помощи болтов 7 крепится гидравлический трансформатор 8 с микрометрическим винтом 9, упирающимся в задающий шток 10, вставленный через сальник 11 в камеру 12 гидротрансформатора 8. Камера 12 заполнена рабочей жидкостью. В нее через сальник 13 вставлен рабочий шток 14 (показан один рабочий шток из трех). Рабочий шток упирается в конец кварцевой штанги 1, закрепленной в подвижном хомуте 15. Хомут 15 прижимается двумя горизонтальными и двумя вертикальными плоскими пружинами 16 (видна одна вертикальная пружина 16) к упору 17 с помощью планки 18, которая крепится к плите 6 и упору 17 при помощи болтов 19. Упор 17 жестко связан с плитой 6. Кварцевая штанга 1 свободным концом направлена в сторону стойки 4, вмороженной в лед. К стойке 4, снабженной параметрическим датчиком 5, крепится термокомпенсационный шток 20. На конце штока 20 закреплен параметрический датчик перемещений 21 свободного конца штанги.

На фиг.2 представлен вид сверху постамента с плитой 6, гидравлическим трансформатором 8, микрометрическим винтом 9, тремя рабочими штоками 14, которые упираются в концы трех кварцевых штанг 1, закрепленных в подвижных хомутах 15. Хомуты 15 прижимаются горизонтальными плоскими пружинами 22 (видны три верхние горизонтальные плоские пружины) к упорам 17 при помощи планок 18 болтами 19. Свободные концы штанг 1 расходятся под углами 120° к стойкам 4 в соответствии с фиг.1.

Работа устройства осуществляется следующим образом. Постамент 2 с тремя параметрическими датчиками 3 и закрепленной на постаменте плитой 6 вмораживается в лед. На плите 6 болтами 7 крепится гидравлический трансформатор 8 с микрометрическим винтом 9, упирающимся в задающий шток 10, вставленный через сальник 11 в камеру 12 гидротрансформатора 8. Штанги из кварцевых труб 1 закрепляются в подвижных хомутах 15, которые прижимаются плоскими вертикальными пружинами 16 (фиг.1) и горизонтальными пружинами 22 (фиг.2) к упорам 17 при помощи планок 18 болтами 19. Свободные концы трех штанг 1 направляются в сторону трех стоек 4, внутри которых расположены по одному параметрическому датчику 5. На стойках закрепляются термокомпенсационные штоки 20 и преобразователи перемещений 21 свободных концов кварцевых штанг. Термокомпенсационные штоки 20 позволяют исключить ошибку, возникающую при собственных температурных деформациях штанг. Электрические сигналы с трех преобразователей перемещений 21 свободных концов кварцевых штанг 1, с трех параметрических датчиков 3, расположенных в постаменте 2, и с трех параметрических датчиков 5, находящихся в стойках 4, поступают на регистрирующую аппаратуру (на фиг.1 и 2 не указана). По этим сигналам определяются главные деформации, главные напряжения, модули упругости, анизотропное состояние льда в соответствии с вышеприведенными формулами.

Контроль за чувствительностью устройства осуществляется следующим образом. Задающий шток 10 вводится через сальник 11 при помощи микрометрического винта 9 в камеру 12 гидротрансформатора 8 на выбранную величину (например, на величину, приводящую к появлению сигнала на штангах деформометра 10 мкм). Гидротрансформатор 8 скреплен с плитой 6 болтами 7. При этом три рабочих штока 14 через сальники 13 выдвинутся и сместят подпружиненные четырьмя плоскими пружинами 16 и 22 подвижные хомуты 15 с зажатыми в них концами кварцевых штанг 1, что обеспечит появление контрольных сигналов в виде ступеней на регистраторе. Далее при выводе задающего штока 10 из камеры 8 при выкручивании микрометрического винта 9 хомуты 15 плоскими пружинами 16 и 22 возвращаются в исходное положение и прижимаются к упорам 17, а на регистраторе запись возвращается на прежний уровень.

Технико-экономический эффект проявляется:

- в повышении точности измерения напряженно-деформированного состояния льда, а именно определении главных деформаций и главных напряжений при одновременном определении азимута источника деформирования льда одним устройством;

- в определении модулей упругости льда по главным деформациям и главным напряжениям и определении степени анизотропии льда;

- в определении затухания напряжений во льду на базе устройства.

Источники информации

1. Латынина Л.А. Анализ работы штангового деформографа. АН СССР, ин-т «Физики Земли», №4218-72, деп., М., 1977 г.

2. Латынина Л.А., Кармалеева P.M. Деформографические измерения.М.: Наука, 1978 г.

3. Смирнов В.Н., Шушлебин А.И. Устройство для измерения деформаций льда. - Авт. св. №712744. Опубликовано 30.01.1980 г. Бюл. №4.

4. Смирнов В.Н., Шушлебин А.И., Альтшулер Г.Г. Датчик давления. Авт. св. №561887. Опубликовано 15.06.77 г. Бюл. №22.

5. Смирнов В.Н., Шушлебин А.И. Устройство для измерения деформаций льда. Авт. св. №1784888. Опубликовано 30.12.92 г. Бюл. №48 (прототип).

Похожие патенты RU2437057C1

название год авторы номер документа
Устройство для измерения деформаций льда 1990
  • Смирнов Виктор Николаевич
  • Шушлебин Александр Иванович
SU1784888A1
Устройство для измерения деформаций льда 1978
  • Смирнов Виктор Николаевич
  • Шушлебин Александр Иванович
SU712744A1
Способ определения напряжённо-деформированного состояния ледяного поля при движении ледокола 2022
  • Алексеева Татьяна Алексеевна
  • Гришин Евгений Александрович
  • Знаменский Максим Сергеевич
  • Ковалёв Сергей Михайлович
  • Сыроветников Сергей Сергеевич
  • Шушлебин Александр Иванович
RU2797972C1
Способ измерения давления внутри ледяного покрова 2016
  • Шушлебин Александр Иванович
  • Ковалёв Сергей Михайлович
  • Знаменский Максим Сергеевич
RU2634097C1
Способ определения в натурных условиях деформационных и прочностных характеристик ровного ледяного покрова при изгибе 2015
  • Смирнов Виктор Николаевич
  • Шушлебин Александр Иванович
  • Ковалёв Сергей Михайлович
  • Нюбом Алексей Александрович
RU2614922C1
Способ разведки ледовой обстановки с использованием дистанционно управляемых беспилотных летательных аппаратов и устройство для его осуществления 2021
  • Чернявец Владимир Васильевич
RU2778158C1
Устройство измерения параметров ледяного покрова (его варианты) 1984
  • Степанюк Иван Антонович
SU1295234A1
СПОСОБ РЕГИСТРАЦИИ ЛИНЕЙНЫХ ДЕФОРМАЦИЙ МАССИВА СКАЛЬНЫХ ПОРОД 1992
  • Ловчиков А.В.
  • Осика В.И.
RU2008699C1
Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби 2016
  • Смирнов Виктор Николаевич
  • Знаменский Максим Сергеевич
  • Шушлебин Александр Иванович
  • Ковалёв Сергей Михайлович
RU2621276C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ЛЕДЯНОГО ПОКРОВА 2010
  • Добротворский Александр Николаевич
  • Бродский Павел Григорьевич
  • Зверев Сергей Борисович
  • Аносов Виктор Сергеевич
  • Воронин Василий Алексеевич
  • Новиков Алексей Иванович
  • Чернявец Владимир Васильевич
  • Тарасов Сергей Павлович
RU2449326C2

Иллюстрации к изобретению RU 2 437 057 C1

Реферат патента 2011 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ И НАПРЯЖЕНИЙ ЛЕДЯНОГО ПОКРОВА

Изобретение относится к области исследования физико-механических свойств льда, в частности льдотехнике, предназначено для измерения напряженно-деформированного состояния ледяного покрова, вызванного природными явлениями и техническими воздействиями. Технический результат - возможность определения главных деформаций и главных напряжений при одновременном определении азимута источника деформирования льда; определение модуля упругости льда; определение анизотропного состояния льда; определение затухания напряжений в ледяном покрове. Устройство для измерения деформаций и напряжений ледяного покрова содержит постамент и стойки кварцевого азимутального деформометра, которые выполнены в виде полых жестких цилиндров с дном полусферической формы. Такая конфигурация минимизирует концентрацию напряжений при их замораживании в лед. В постаменте располагаются три параметрических датчика, каждый из которых закреплен внутри цилиндра в двух точках, расположенных диаметрально противоположно в горизонтальной плоскости. При этом оси чувствительности датчиков ориентированы под углами 120° и совпадают с направлением осей чувствительности кварцевых штанг деформометра. В каждой стойке, вмороженной у свободных концов кварцевых штанг, ниже поверхности льда устанавливается параметрический датчик, закрепленный внутри цилиндра в двух точках, расположенных диаметрально противоположно в горизонтальной плоскости. При этом ось чувствительности каждого датчика, расположенного в стойке, совпадает с осью чувствительности своей кварцевой штанги и осью чувствительности одного параметрического датчика, установленного в постаменте. 2 ил.

Формула изобретения RU 2 437 057 C1

Устройство для измерения деформаций и напряжений ледяного покрова, содержащее постамент, на котором расположен гидравлический трансформатор с тремя рабочими штоками, упирающимися в три подвижных хомута с зажатыми в них тремя кварцевыми штангами, сами хомуты прижимаются четырьмя плоскими пружинами к упорам, скрепленными с постаментом, четвертый задающий шток вводится в камеру гидротрансформатора микрометрическим винтом, штанги от постамента расходятся к трем стойкам под углами 120°, на стойках закрепляются три термокомпенсационных штока с датчиками перемещений свободных концов штанг, постамент и стойки вмораживаются в лед, отличающееся тем, что постамент и стойки выполнены в виде полых жестких цилиндров с дном полусферической формы, внутри постамента устанавливается три параметрических датчика, каждый из которых закреплен внутри постамента в двух точках, расположенных диаметрально противоположно в горизонтальной плоскости, с осями чувствительности ориентированными под углами 120° относительно друг друга и совпадающими по направлению с кварцевыми штангами, в стойках располагается по одному параметрическому датчику, закрепленному в двух точках, расположенных диаметрально противоположно в горизонтальной плоскости и осями чувствительности, ориентированными в соответствии со своей кварцевой штангой и одним параметрическим датчиком постамента.

Документы, цитированные в отчете о поиске Патент 2011 года RU2437057C1

Датчик давления 1974
  • Смирнов Виктор Николаевич
  • Шушлебин Александр Иванович
  • Альтшулер Герман Герцович
SU561887A1
Устройство для измерения деформаций льда 1990
  • Смирнов Виктор Николаевич
  • Шушлебин Александр Иванович
SU1784888A1
Устройство для измерения деформаций льда 1978
  • Смирнов Виктор Николаевич
  • Шушлебин Александр Иванович
SU712744A1
DE 3740189 A1, 09.06.1988.

RU 2 437 057 C1

Авторы

Смирнов Виктор Николаевич

Шушлебин Александр Иванович

Ковалёв Сергей Михайлович

Даты

2011-12-20Публикация

2010-06-23Подача