Изобретение относится к полимерному материаловедению и может быть использовано в машиностроении для изготовления износостойких изделий конструкционного назначения, работающих в условиях интенсивного изнашивания, низких температур и агрессивных сред, применяемых в конструкциях машин, механизмов, технологического оборудования и т.п.
К большинству современных конструкционных материалов на основе полимерных матриц предъявляют комплекс требований по стойкость к действию масел, физико-механическим, морозоустойчивым, износостойким, теплофизическим, и другим характеристикам. В связи с этим, при создании композитов необходимо подобрать компоненты, которые оказывают комплексное воздействие на полимерную матрицу, обеспечивая синергический эффект. К числу таких компонентов относятся модификаторы, размер частиц которых не превышает 100 нм. По современной классификации также модификаторы называют нанодисперсными или нанофазными, а композиционные материалы, которые их содержат - соответственно нанокомпозиционными материалами или нанокомпозитами.
Известна полимерная антифрикционная композиция, содержащая полиформальдигид, модифицированный сернокислым барием, тальком и нитридом бора и сверхвысокомолекулярный полиэтилен. (Авторское свидетельство СССР 1670911, C08L 59/02). Материал имеет высокие физико-механические свойства и эффективен при использовании в качестве конструкционного материала для машиностроении, в частности станкостроении при изготовлении деталей копировальных устройств отделочно-обточных станков, но низкую морозоустойчивоть и показатель истираемости.
Известен композиционный материал на основе полисилоксана и сверхвысокомолекулярного полиэтилена от 5 до 15% (Патент 2119429, В29В 7/38). Материал обладает улучшенными прочностными свойствами, высокой стойкостью к тепловому старению. Недостатком материала является потеря эластических свойств при низких температурах и трудности при переработке (предварительная подвулканизация).
Известна термопластическая самосмазывающаяся полимерная композиция с улучшенной износостойкостью, включающая смесь в виде расплава из термопластичного полимера полиолефинов ультравысокого молекулярного веса (Патент РФ 97115931, C08L 23/02). Материал предназначен для изготовления формованных изделий - подшипников, шестерней, дисков, скользящих пластин, рычагов. Однако материал обладает недостаточной стойкостью к действию алифатических углеводородов, что не позволяет использовать его в машиностроении для изготовления ответственных конструкционных изделий.
Известна резиновая смесь 7-В-14 на основе бутадиен-нитрильного каучука БНКС-18АН, широко применяемая для изготовления упомянутых выше формовых резинотехнических изделий. Предприятия-изготовители при этом руководствуются требованиями Технических условий ТУ 38.005204, ТУ 005216, которым резиновая смесь 7-В-14 должна соответствовать. Материал предназначен для изготовления уплотнительных манжет, прокладок, колец, работающих в среде масел, топлив, смазок, нефти. Недостатком материала является потеря эластических свойств при низких температурах, очень низкая стойкость к истиранию, характерная для бутадиен-нитрильных каучуков.
Наиболее близким по технической сущности к заявляемому решению является морозо-, износо-, маслостойкая резиновая смесь для уплотнительных материалов на основе бутадиен-нитрильного каучука с содержанием нитрила акриловой кислоты 17-23 мас.%, включающий серу, N,N-дифенилгуанидин, ди-(2-бензотиозолил)дисульфид, окись цинка, альдоль-α-нафтиламин, N-(4-гидроксифенил)нафтиламин-2, N-(1,3-диметилбутил)-N-фенилендиамин-1,4, технический углерод П-803 с удельной поверхностью 12-18 м2/г, стеариновую кислоту, модифицированный политетрафторэтилен (фторопласт 4МБ), дисульфид молибдена, β-сиалон. (Патент RU 2125068 С1, 20.01.1999).
Вулканизаты из этой смеси имеют повышенную морозостойкость, износо- и маслостойкость. Данная резиновая смесь принята за прототип. Однако улучшение по показателю стойкости к износу резиновых смесей по прототипу незначительно: стойкость к объемному износу при абразивном истирании выше стойкости известных резин всего на 6-8%. Помимо этого смесь содержит дорогой импортный противостаритель N-(1,3-диметилбутил)-N-фенилендиамин-1,4, (сантофлекс 13, производитель Англия), что значительно удорожает ее стоимость.
Задача изобретения состоит в разработке износостойкого и морозоустойчивого композиционного материала с физико-механическими характеристиками, варьируемыми в широких пределах в зависимости от функционального назначения изделий, для изготовления морозоустойчивых изделий, работающих в условиях интенсивного изнашивания в среде алифатических углеводородов для предотвращения трения между металлическими поверхностями.
Технический результат, достигаемый при осуществлении изобретения, состоит в получении композиционного материала, имеющего высокие триботехнические характеристики, высокую морозоустойчивость и стойкость к воздействию алифатических углеводородов, без потери технических характеристик прототипа.
Поставленная задача достигается тем, что композиционный материал содержит бутадиен-нитрильный каучук, сверхвысокомолекулярный полиэтилен, модифицированный природным углеродсодержащим материалом - карбосилом, малоактивный технический углерод П-803, активный технический углерод П-324, сложный эфир изооктилового спирта и себациновой кислоты (ДОС), неорганический ускоритель вулканизации - окись цинка, органический активатор вулканизации - стеариновую кислоту, основное вулканизующее вещество - серу, ускорители вулканизации N,N-Дифинилгуанидин (Гуанид Ф) и Циклогексил-2-бензтиазолсульфенамид (Сульфенамид Ц), противостарители - диафен ФП и ацетонанил Н при следующем соотношении компонентов, мас.% (Табл.1).
В отличие от прототипа композиционный материал не содержит следующие компоненты: ди-(2-бензотиозолил)дисульфид, альдоль-α-нафтиламин, N-(4-гидроксифенил)нафтиламин-2, N-(1,3-диметилбутил)-N-фенилендиамин-1,4, модифицированный политетрафторэтилен (фторопласт 4МБ), дисульфид молибдена, β-сиалон.
В качестве основы использовали бутадиен-нитрильный каучук, представляющий собой сополимер бутадиена и нитрила акриловой кислоты БНКС-18АН, вводили модифицированный природным углеродсодержащим материалом - карбосилом сверхвысокомолекулярный полиэтилен (СВМПЭ), который относится к классу полиэтиленов низкого давления (ПНД). Благодаря своей уникальной структуре, гигантской молекулярной массе СВМПЭ имеет более высокие физико-механические характеристики, стойкость к агрессивным средам, триботехнические и морозоустойчивые свойства, чем остальные полиэтилены класса ПНД. СВМПЭ модифицировали углеродосодержащим материалом. В качестве наполнителей применяли малоактивный технический углерод П-803 и активный технический углерод П-324, который позволяет получить высокие упругопрочностные характеристики вулканизата. Вулканизующая группа содержит неорганический ускоритель вулканизации - окись цинка, органический активатор вулканизации - стеариновую кислоту, основное вулканизующее вещество - серу, ускорители вулканизации - N,N-Дифинилгуанидин (Гуанид Ф) и Циклогексил-2-бензтиазолсульфенамид (Сульфенамид Ц), пластификатор - сложный эфир изооктилового спирта и себациновой кислоты (ДОС). В качестве антиоксиданта и антиозонанта вводили диафен ФП и ацетонанил Н.
В качестве нанодисперсного модификатора в количестве 7% от массы СВМПЭ применяли природный углеродсодержащий материал - карбосил, который представляет собой природный материал, насыщенный углеродным веществом в некристаллизующемся состоянии, содержащий большое количество метаморфизованного органического веществ. Обладает повышенной химической стойкостью, достаточно высоким сопротивлением истиранию и морозостойкостью.
Модификацию СВМПЭ производили в смесителе ударного действия. Такой способ модификации обеспечивает максимально равномерное распределение модификатора в СВМПЭ. Смешение ингредиентов композиционного материала и введение в него модифицированного СВМПЭ производили на вальцах ПД 320 160/160 при режимах, обеспечивающих равномерное распределение всех компонентов.
Пример получения заявленного композиционного материала конкретного состава (состав I табл.1). Навеску природного углеродсодержащего материала карбосила в количестве 7% от массы СВМПЭ с размером фракции не более 50 мкм совместно с СВМПЭ помещали в барабан смесителя ударного типа и перемешивали при скорости вращения барабанов 450 об/мин в течение 5-7 мин. Подготавливали навески каучука и ингредиентов композиционного материала по весу согласно рецепту. Смешение композиционного материала на основе бутадиен-нитрильного каучука и модифицированного СВМПЭ производили на вальцах ПД 320 160/160 при температуре поверхности валков 40±5°С. Последовательность ввода ингредиентов: вальцевали каучук при зазоре между валками 1±0,5 мм, вводили модифицированный СВМПЭ, затем регулировали величину зазора вальцев так, чтобы между валками находился хорошо обрабатываемый запас смеси. Вводили стеариновую кислоту, сульфенамид Ц, цинковые белила, антиоксиданты, технический углерод П-803, технический углерод П-324 совместно с нетоксолом, серу. Общее время смешения 30-35 мин. Вулканизацию лабораторных образцов проводили на вулканизационном прессе 800×800 при температуре 165°С в течение 10 мин при давлении на площадь ячейки 3.5 Мпа.
Характеристики износостойких и морозоустойчивых композиционных материалов по прототипу и заявленным составам приведены в таблице 2.
Как следует из данных таблицы 2, заявленные составы I, II, III значительно (в 2-4 раза) превосходят прототип по триботехническим свойствам (объемный износ при абразивном истирании) без потери остальных технических характеристик прототипа. По показателю истраемости заявленный композиционный материал превосходит известную резиновую смесь 7-В-14 по фактическому значению в 4-7 раза.
Особенностью полученного композиционного материала является формирование на поверхности износостойкого слоя, который за счет введения модифицированного СВМПЭ способен выдержать действие фрикционных сил и жидких агрессивных сред.
Таким образом, заявленные составы в заявленном соотношении превосходят прототип по совокупности характеристик.
Сущность изобретения состоит в следующем: при введении в резиновую смесь на основе бутадиен-нитрильного каучука модифицированного СВМПЭ происходит значительное улучшение стойкости к алифатическим углеводородам; показатель истираемости падает в несколько раз. Введение активного технического углерода П-324, изменение соотношения дозировки ускорителей вулканизации, уменьшение дозировки малоактивного технического углерода П-803, введение сложного эфира изооктилового спирта и себациновой кислоты позволило получить маслобензостойкий износо- и морозостойкий материал без потери технических свойств прототипа.
Разработанный материал используется для изготовления деталей для предотвращения трения между металлическими поверхностями, для восприятия одиночных ударов, а также в качестве прокладок, покрытий, манжет, уплотнений, колец, других конструкционных изделий различного функционального назначения, работающих в режиме низких температур, интенсивного истирания в среде нефти, масел, смазок и топлива.
название | год | авторы | номер документа |
---|---|---|---|
МАСЛОБЕНЗОСТОЙКАЯ МОРОЗОСТОЙКАЯ РЕЗИНОВАЯ СМЕСЬ | 2016 |
|
RU2633892C1 |
Резиновая смесь | 2016 |
|
RU2615520C1 |
МАСЛОБЕНЗОСТОЙКАЯ РЕЗИНОВАЯ СМЕСЬ | 2012 |
|
RU2507221C1 |
КОМПОЗИЦИОННЫЙ НЕФТЕНАБУХАЮЩИЙ МАТЕРИАЛ | 2016 |
|
RU2625108C1 |
РЕЗИНОПОЛИМЕРНЫЙ МАТЕРИАЛ ДЛЯ ВНУТРЕННЕЙ ФУТЕРОВКИ ГИДРОЦИКЛОНОВ | 2016 |
|
RU2645503C1 |
КОМПОЗИЦИОННЫЙ РЕЗИНОПОЛИМЕРНЫЙ ИЗНОСОСТОЙКИЙ МАТЕРИАЛ ДЛЯ ГИДРАВЛИЧЕСКИХ УСТРОЙСТВ | 2009 |
|
RU2425850C2 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ СИНТЕТИЧЕСКОГО ЦИС-ИЗОПРЕНОВОГО КАУЧУКА И СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА (СВМПЭ) ДЛЯ НАРУЖНЫХ ОБКЛАДОК КОНВЕЙЕРНЫХ ЛЕНТ | 2012 |
|
RU2505562C1 |
Резиновая смесь | 2020 |
|
RU2745994C1 |
РЕЗИНОВАЯ СМЕСЬ | 2011 |
|
RU2485147C2 |
МОРОЗОСТОЙКАЯ РЕЗИНОВАЯ СМЕСЬ | 2012 |
|
RU2522610C2 |
Изобретение относится к полимерному материаловедению и может быть использовано для изготовления морозоустойчивых деталей - прокладок, покрытий, манжет, уплотнений, колец и других конструкционных изделий различного функционального назначения, работающих в режиме интенсивного истирания в среде нефти, масел, смазок и топлива. Резиновая смесь содержит, мас.%: каучук БНКС-18АН - 34,51-38,48, серу - 0,9-1,0, сульфенамид Ц - 1,04-1,15, N,N-дифенилгуанидин - 0,07-0,12,белила цинковые - 1,04-1,15, диафен ФП - 0,35-0,36, ацетонанил Н - 0,69-0,77, канифоль - 0,69-0,77, стеарин - 0,35-0,38, сверхвысокомолекулярный полиэтилен, модифицированный 7 мас.% природного углеродсодержащего материала-карбосила - 5,76-15,50, технический углерод П-803 - 27,61-30,79, технический углерод П-324 - 6,9-7,76, диоктилсебацинат - 10,35-11,54. Изобретение позволяет повысить эксплуатационные, износостойкие и морозоустойчивые характеристики композиционного материала с одновременным обеспечением физико-механических показателей и упругопрочностных свойств. 2 табл.
Композиционный маслобензостойкий износо-морозостойкий материал на основе бутадиен-нитрильного каучука БНКС-18АН, включающий наполнитель технический углерод П-803, белила цинковые, стеарин, серу, N,N-дифенилгуанидин и модифицированный полимер, отличающийся тем, что он содержит в качестве модифицированного полимера - сверхвысокомолекулярный полиэтилен, модифицированный 7 мас.% природного углеродсодержащего материала - карбосила, и дополнительно содержит циклогексил-2-бензтиазол-сульфенамид - сульфенамид Ц, диафен ФП, ацетонанил Н, канифоль, технический углерод П-324, сложный эфир изооктилового спирта и себациновой кислоты - диоктилсебацинат при следующем соотношении компонентов, мас.%.
МОРОЗОСТОЙКАЯ РЕЗИНОВАЯ СМЕСЬ | 1996 |
|
RU2125068C1 |
Резиновая смесь | 1982 |
|
SU1047933A1 |
ВУЛКАНИЗУЕМАЯ РЕЗИНОВАЯ СМЕСЬ НА ОСНОВЕ АКРИЛАТНОГО КАУЧУКА ПОВЫШЕННОЙ ИЗНОСОСТОЙКОСТИ | 2005 |
|
RU2296784C2 |
Антифрикционная композиция | 1991 |
|
SU1824410A1 |
Авторы
Даты
2011-12-27—Публикация
2008-04-14—Подача