СПОСОБ ОПТИЧЕСКОГО ЗОНДИРОВАНИЯ АТМОСФЕРЫ Российский патент 2012 года по МПК G01W1/00 

Описание патента на изобретение RU2441261C1

Изобретение относится к области метеорологии, а именно к способам определения характеристик загрязнения атмосферы, и может использоваться, например, для измерения прозрачности атмосферы лидарными системами при определении аэрозольного загрязнения воздуха.

Известен способ оптического зондирования неоднородной атмосферы по авторскому свидетельству №390401 [1], при котором осуществляют посылку в атмосферу светового импульса малой длительности и регистрацию рассеянного в обратном направлении света, преобразованного в электрические сигналы. Эти сигналы накапливают в течение заданного промежутка времени в зависимости от общей протяженности исследуемого участка. При этом обеспечивают усиление принятых сигналов пропорционально квадрату текущего времени, отсчитываемого с момента посылки импульса в атмосферу.

Этот известный способ обладает низкой точностью, поскольку он основан на предположении о постоянстве отношения коэффициента обратного рассеяния к коэффициенту ослабления на исследуемой трассе зондирования. Это предположение не выполняется в условиях реальной неоднородной атмосферы.

Наиболее близким к предлагаемому изобретению является известный способ определения прозрачности неоднородной атмосферы [2] (авторское свидетельство №1597815), при котором осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим не менее чем по трем неколлинеарным направлениям; с образованием области зондирования отрезками между точками их пересечения, осуществляют прием эхо-сигналов в точках посылки, а характеристики атмосферы определяют по мощностям этих сигналов с использованием расчетных формул.

В этом известном решении повышена точность определения характеристик загрязнения неоднородной атмосферы благодаря использованию не менее чем трех точек посылки в атмосферу световых импульсов. Однако в решении [2] не учитывается возможность существования в процессе измерений значительной неоднородности атмосферы в пределах пространственной протяженности зондирующего светового импульса.

Техническим результатом изобретения является повышение точности определения характеристик атмосферы за счет корректного учета атмосферной неоднородности.

В предлагаемом способе используют некоторые существенные признаки прототипа, а именно: в нем осуществляют посылку в неоднородную атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим не менее чем по трем неколлинеарным направлениям; с образованием области зондирования отрезками между точками их пересечения, осуществляют прием эхо-сигналов в точках посылки, а характеристики загрязнения атмосферы определяют по мощностям этих сигналов с использованием расчетных формул.

Существенными отличительными признаками предлагаемого способа является то, что осуществляют посылку в атмосферу световых импульсов по дополнительным трассам с образованием дополнительных областей зондирования, имеющих трассы, общие с трассами первой области, и рассеивающие объемы на них, разнесенные на расстояние, не меньшее пространственной протяженности зондирующего светового импульса, накапливают эхо-сигналы на отрезках, образующих области, определяют характеристики загрязнения атмосферы по эхо-сигналам, принятым и накопленным с учетом и без учета характеристик загрязнения атмосферы дополнительных областей зондирования, и осуществляют определение характеристик загрязнения атмосферы при задаваемом уровне совпадения двух последовательно полученных результатов.

Оптические характеристики загрязнения неоднородной атмосферы, в частности,

находят из системы уравнений, записанной для многоугольников, образованных пересечением трасс зондирования по неколлинеарным направлениям

и из системы уравнений

где ,

мощность сигнала обратного рассеяния, скорректированная на геометрический фактор лидара,

Pi,j - мощность сигнала обратного рассеяния,

- геометрический фактор лидара,

с - скорость света,

τ - длительность зондирующего импульса,

β - коэффициент обратного рассеяния,

σ - коэффициент ослабления,

m=1/g, причем определяется и постоянная g в степенной связи коэффициента обратного рассеяния с коэффициентом ослабления

- радиус-вектор точки посылки световых импульсов и приема сигналов обратного рассеяния (i-й точке расположения приемопередатчика соответствует радиус-вектор , i=1, 2, …),

- радиус-вектор зондируемого рассеивающего элемента,

- текущий радиус-вектор точки прямой, проходящей через точки i, j,

ci - отрезок , по которому вычисляются интегралы,

dr - элемент длины отрезка.

Сущность изобретения пояснена на чертеже.

На чертеже представлена схема посылок зондирующих импульсов и приема эхо-сигналов для примера трех приемопередатчиков (лидаров).

Способ реализуют следующим образом.

Приемопередатчики 1, 2 и 3 располагают с разнесением в пространстве в точках , и .

Осуществляют посылку световых импульсов в направлении области зондирования, которая ограничена точками (i=1, 2, 3) и в направлении дополнительных областей зондирования, которые ограничены точками (например, i=3, 4, 5, i=3, 6, 7). Эти области зондирования имеют трассы, общие с трассами первой области (проходящие через точки , , а также через точки , ), и рассеивающие объемы на них, расстояния между которыми задаются не меньше пространственной протяженности зондирующего светового импульса: , , на трассе, проходящей через точки , , а также , , на трассе, проходящей через точки , .

Количество дополнительных трасс определяется числом протяженностей зондирующего светового импульса, укладывающихся на участке, ограниченном точками , .

В точках посылки осуществляют прием эхо-сигналов от отрезков образованных областей зондирования атмосферы.

Принимают сигналы в точке от отрезков, ограниченных точками: , и , , а также , . Принимают сигналы в точке от отрезков, ограниченных точками: , и , , а также , . Принимают сигналы в точке от отрезков, ограниченных точками: , и , , а также , . Принятые эхо-сигналы, скорректированные на геометрический фактор лидара, накапливают в соответствии с формулами (4), (5). Результат пропорционален:

b1 на отрезке, ограниченном точками , ;

b2 на отрезке, ограниченном точками , ;

b3 на отрезке, ограниченном точками , ;

b4 на отрезке, ограниченном точками , ;

b5 на отрезке, ограниченном точками , ;

b6 на отрезке, ограниченном точками , ;

b7 на отрезке, ограниченном точками , ;

b8 на отрезке, ограниченном точками , ;

b9 на отрезке, ограниченном точками , .

Величины zi находят из системы уравнений (2). Для рассматриваемого конкретного примера находят решение систем уравнений:

Накапливают эхо-сигналы, принятые в точках , в соответствии с формулами (6), (7) с учетом найденных величин zi. Аналогичную процедуру используют для эхо-сигналов, принятых в точке . Величины находят из системы уравнений

Определяют характеристики атмосферы при задаваемом уровне совпадения величин , zi, найденных из систем уравнений (9), (12), означающем достижение требуемой точности приближения коротких зондирующих импульсов.

Указанные существенные отличия позволяют повысить точность из-за учета возможной неоднородности атмосферы в пределах пространственной протяженности зондирующего светового импульса.

Физические принципы, на которых основаны измерения предлагаемым способом, состоят в том, что измеренные мощности эхо-сигналов связаны с оптическими характеристиками неоднородной атмосферы известным лидарным уравнением для светового импульса конечной пространственной протяженности. На основе этого уравнения разработаны новые, ранее не использовавшиеся расчетные алгоритмы для определения оптических характеристик. В этих алгоритмах корректно учтены влияющие факторы.

Пример реализации способа.

В пунктах , и , находящихся на одной прямой, размещают лидары 1, 2 и 3 на основе ЛИВО. Излучение зондирующих импульсов осуществляется на рабочей длине волны 0,69 мкм в окне прозрачности водяного пара. Энергия в импульсе 0.07-0.1 Дж. Длительность импульса 30 нс. Расстояние между лидарами 1, 2 и 2, 3 не превышает 0.5 км. Зондирование неоднородной атмосферы осуществляется в вертикальной плоскости, проходящей через линию размещения лидаров. Осуществляют посылку световых импульсов лидаром 1 по трассе, проходящей через точки , , лидаром 2 - через точки , ; лидаром 3 - через точки , с образованием треугольной области зондирования. Осуществляют посылку световых импульсов лидаром 1 по трассе, проходящей через точки , , а также через точки , с образованием дополнительных треугольных областей зондирования. Эти треугольные области зондирования имеют трассы, общие с трассами первой области (проходящие через точки , , а также через точки , ), и рассеивающие объемы на них, расстояния между которыми задаются не меньше пространственной протяженности зондирующего светового импульса: , на трассе, проходящей через точки , , а также , на трассе, проходящей через точки , .

В точках посылки осуществляют прием эхо-сигналов:

в точке от отрезков, ограниченных точками: , и , , а также , ;

в точке от отрезков, ограниченных точками: , и , , а также , ;

в точке от отрезков, ограниченных точками: , и , , а также , .

Принятые и скорректированные эхо-сигналы накапливают в соответствии с формулами (4), (5) а также в соответствии с формулами (6), (7).

Определяют характеристики неоднородной атмосферы , zi из систем уравнений (9), (12).

Измерения имеют требуемую точность в случаях, когда результаты, полученные по расчетным формулам (9), (12), отличаются друг от друга в пределах величины заданной погрешности, в данном случае ±30%.

Обоснование существенности признаков. Как следует из описания, каждый из указанных признаков необходим, а вся их неразрывная совокупность достаточна для достижения технического результата - повышения точности измерений за счет более корректного учета влияющих факторов.

Обоснование изобретательского уровня. Заявляемый способ был проанализирован на соответствие критерию «изобретательский уровень». Для этого были исследованы близкие признаки известных решений как в данной, так и в смежных областях техники. Так по источнику [3] был выявлен признак приема эхо-сигналов от общего рассеивающего объема неоднородной атмосферы. Однако, в этом известном решении [3] общий рассеивающий объем атмосферы принадлежит трассам зондирования, проходящим не менее чем по трем неколлинеарным направлениям. Именно благодаря такому осуществлению посылок в атмосферу световых импульсов из точек, разнесенных в пространстве, достигается технический результат способа [3]. В заявляемом же способе общий рассеивающий объем атмосферы принадлежит двум областям зондирования, имеющим общие трассы и рассеивающие объемы на них, разнесенные на расстояние, не меньшее пространственной протяженности зондирующего светового импульса.

Таким образом, по мнению заявителя и авторов, предлагаемое изобретение способа определения прозрачности атмосферы в своей неразрывной совокупности признаков является новым, явным образом не следует из уровня техники и позволяет получить важный технический результат - повышение точности определений за счет более корректного учета влияющих факторов.

Источники информации

1. А.с. №390401. Способ определения прозрачности атмосферы / Ковалев В.А. - Бюллетень изобретений №30, 1973.

2. А.с. №1597815 А1, МКИ 5 G01W 1/00. Способ определения показателя ослабления атмосферы // Егоров А.Д., Емельянова В.Н. - Опубл. 07.10.90, Бюлл. изобр. №37 (прототип).

3. А.с. №966639. Способ определения оптических характеристик рассеивающих сред / Сергеев Н.М., Кугейко М.М. Ашкинадзе Д.А. Бюллетень изобретений №38, 1982.

Похожие патенты RU2441261C1

название год авторы номер документа
СПОСОБ ДИСТАНЦИОННОГО ОПТИЧЕСКОГО ЗОНДИРОВАНИЯ СЛАБО РАССЕИВАЮЩЕЙ АТМОСФЕРЫ 2011
  • Егоров Александр Дмитриевич
  • Потапова Ирина Александровна
  • Ржонсницкая Юлия Борисовна
  • Саноцкая Надежда Александровна
RU2495452C2
СПОСОБ ОПТИЧЕСКОГО ЗОНДИРОВАНИЯ НЕОДНОРОДНОЙ АТМОСФЕРЫ 2011
  • Егоров Александр Дмитриевич
  • Потапова Ирина Александровна
  • Ржонсницкая Юлия Борисовна
  • Саноцкая Надежда Александровна
RU2473931C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ 2009
  • Егоров Александр Дмитриевич
  • Потапова Ирина Александровна
RU2439626C2
Способ определения прозрачности неоднородной атмосферы 2016
  • Егоров Александр Дмитриевич
  • Потапова Ирина Александровна
RU2650797C1
Способ дистанционного оптического зондирования неоднородной атмосферы 2015
  • Егоров Александр Дмитриевич
  • Дикинис Александр Владиславович
  • Потапова Ирина Александровна
RU2624834C2
СПОСОБ МНОГОПОЗИЦИОННОГО ОПРЕДЕЛЕНИЯ ОПТИЧЕСКИХ ХАРАКТЕРИСТИК АТМОСФЕРЫ 2013
  • Егоров Александр Дмитриевич
  • Потапова Ирина Александровна
  • Саноцкая Надежда Александровна
  • Драбенко Вадим Анатольевич
RU2538028C1
СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ УЧАСТКА НЕОДНОРОДНОЙ АТМОСФЕРЫ 2014
  • Егоров Александр Дмитриевич
  • Потапова Ирина Александровна
  • Драбенко Вадим Анатольевич
RU2560026C1
СПОСОБ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ НЕОДНОРОДНОЙ АТМОСФЕРЫ 2013
  • Егоров Александр Дмитриевич
  • Потапова Ирина Александровна
  • Драбенко Вадим Анатольевич
RU2547474C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ 2008
  • Егоров Александр Дмитриевич
  • Потапова Ирина Александровна
  • Ржонсницкая Юлия Борисовна
RU2395106C2
Способ определения оптических характеристик рассеивающих сред 1981
  • Сергеев Николай Михайлович
  • Кугейко Михаил Михайлович
  • Ашкинадзе Даниил Аврамович
SU966639A1

Реферат патента 2012 года СПОСОБ ОПТИЧЕСКОГО ЗОНДИРОВАНИЯ АТМОСФЕРЫ

Изобретение относится к области метеорологии, а именно к способам определения характеристик загрязнения. Согласно способу осуществляют посылку в неоднородную атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим не менее чем по трем неколлинеарным направлениям; с образованием области зондирования отрезками между точками их пересечения, и осуществляют прием эхо-сигналов в точках посылки. Характеристики загрязнения атмосферы определяют по мощностям этих сигналов с использованием расчетных формул, и осуществляют посылку в атмосферу световых импульсов по дополнительным трассам с образованием дополнительных областей зондирования, имеющих трассы, общие с трассами первой области, и рассеивающие объемы на них, разнесенные на расстояние, не меньшее пространственной протяженности зондирующего светового импульса, накапливают эхо-сигналы на отрезках, образующих области, определяют характеристики загрязнения атмосферы по эхо-сигналам, принятым и накопленным с учетом и без учета характеристик загрязнения атмосферы дополнительных областей зондирования, и осуществляют определение характеристик атмосферы при задаваемом уровне совпадения двух последовательно полученных результатов. Технический результат - повышение точности определений за счет корректного учета влияющих факторов. 1 ил.

Формула изобретения RU 2 441 261 C1

Способ оптического зондирования атмосферы, при котором осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим не менее чем по трем неколлинеарным направлениям, с образованием области зондирования отрезками между точками их пересечения, осуществляют прием эхо-сигналов в точках посылки, а характеристики загрязнения неоднородной атмосферы определяют по мощностям этих сигналов с использованием расчетных формул, отличающийся тем, что осуществляют посылку в атмосферу световых импульсов по дополнительным трассам с образованием дополнительных областей зондирования, имеющих трассы, общие с трассами первой области, и рассеивающие объемы на них, разнесенные на расстояние, не меньшее пространственной протяженности зондирующего светового импульса, накапливают эхо-сигналы на отрезках, образующих области, определяют характеристики загрязнения атмосферы по эхо-сигналам, принятым и накопленным с учетом и без учета характеристик загрязнения атмосферы дополнительных областей зондирования, и осуществляют определение характеристик загрязнения атмосферы при задаваемом уровне совпадения двух последовательно полученных результатов.

Документы, цитированные в отчете о поиске Патент 2012 года RU2441261C1

Способ определения показателя ослабления атмосферы 1987
  • Егоров Александр Дмитриевич
  • Емельянова Валентина Николаевна
SU1597815A1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ 0
SU390401A1
Способ определения прозрачности атмосферы 1982
  • Ковалев Владимир Александрович
  • Игнатенко Виктор Мечиславович
SU1163217A1
КОРРЕЛЯЦИОННО-ЭКСТРЕМАЛЬНЫЙ СПОСОБ ДИСТАНЦИОННОГО МОНИТОРИНГА ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ 2005
  • Алимов Николай Иванович
  • Манец Анатолий Иванович
  • Шлыгин Петр Евгеньевич
  • Бойко Андрей Юрьевич
  • Тюрин Дмитрий Владимирович
  • Мацюк Григорий Владимирович
RU2313779C2
Способ определения прозрачности атмосферы 1976
  • Абрамочкин Александр Иванович
  • Задде Геннадий Освальдович
  • Тихомиров Александр Алексеевич
SU610037A1

RU 2 441 261 C1

Авторы

Егоров Александр Дмитриевич

Блакитная Полина Александровна

Потапова Ирина Александровна

Ржонсницкая Юлия Борисовна

Саноцкая Надежда Александровна

Даты

2012-01-27Публикация

2010-10-22Подача