ПРЕДОХРАНИТЕЛЬНО-ДЕТОНИРУЮЩЕЕ УСТРОЙСТВО Российский патент 2012 года по МПК F42B3/10 

Описание патента на изобретение RU2442949C1

Изобретение относится к области взрывных технологий, применяемых в горнодобывающей и нефтегазовой промышленности, а также военной технике, и может быть использовано в устройствах предохранения от несанкционированного подрыва и в логических системах взрывной автоматики.

Известно устройство с использованием взрывной логической схемы, в частности взрывного логического элемента «И», содержащего два входа и один выход, выполненного в виде детонационных каналов в пенопластовом материале, согласно изобретению по авторскому свидетельству СССР №1778491, F42B 3/10, опубл. 30.11.1992, БИ №44. Известный логический элемент снабжен инертной перегородкой и приемным зарядом ВВ, размещенным за инертной перегородкой перед выходом, при этом длина L приемного заряда ВВ определяется из соотношения L=2D×Δτ, где D - скорость детонации заряда ВВ, Δτ - допустимая разновременность инициирования входов, обеспечивающая прохождение взрывного сигнала к выходу. Известный логический элемент выполняет функцию логического элемента «И» только при одновременном высокоточном инициировании двух входов.

Причиной, препятствующей достижению указанного ниже технического результата, является сложность обеспечения синхронности поступления команд на оба входа для надежного инициирования устройства. Это требует применения специальных средств инициирования или устройств синхронизации, что увеличивает габариты и ограничивает область использования известного устройства. Недостатком устройства является также использование материалов, имеющих низкую термостойкость.

В качестве прототипа заявляемого устройства, как наиболее близкого по технической сущности, выбрано устройство с использованием взрывной логической схемы по патенту РФ №2247923, F42B 3/10, опубликованному 10.03.2005, БИ №7. Известное устройство содержит плату с двумя входами и одним выходом, связанными между собой детонационными прутками, образующими между первым входом и выходом длинную и короткую ветви с подстыковкой второго входа к короткой ветви, при этом на стыках длинной и короткой ветвей и короткой ветви и второго входа установлены исполнительные элементы, разрушающие детонационную связь. Детонационные прутки из осажденного ВВ размещены на обеих сторонах платы, а в плате выполнены сквозные отверстия, в которых установлены исполнительные элементы, разрушающие детонационную связь, выполненные в виде приемного заряда из осажденного ВВ и примыкающей к нему инертной преграды, размещенной со стороны разрушаемого детонационного прутка с возможностью перемещения под действием продуктов взрыва приемного заряда.

Причинами, препятствующими достижению указанного ниже технического результата, являются: недостаточная надежность функционирования взрывной логической схемы, обусловленная низкой механической прочностью миниатюрных детонационных прутков при длительных вибрационных и ударных воздействиях, имеющих место при реальной эксплуатации подобных зарядов; низкая технологичность изготовления и сборки логической схемы вследствие необходимости точной установки и крепления инертной преграды в отверстиях платы; низкая термостойкость инертной преграды, выполненной из полиметилметакрилата (оргстекла), приводящая к изменению прочности и геометрических размеров при температурах более 100°С.

Задачей заявляемого изобретения является повышение надежности функционирования устройства за счет повышения механической прочности к воздействию ударов, вибраций и механических перемещений с одновременным повышением термостойкости устройства.

При использовании настоящего изобретения достигнут следующий технический результат:

- повышена надежность срабатывания устройства;

- повышена термостойкость устройства до 220°С;

- обеспечена механическая прочность и стойкость к воздействию ударов и вибраций;

- обеспечена высокая технологичность устройства;

- реализована возможность использования энергии окружающей среды для задействования устройства.

Для решения указанной задачи и достижения технического результата в предохранительно-детонирующем устройстве, содержащем корпус, по крайней мере, с одним входом и выходом, связанными между собой детонационным каналом, заполненным вторичным ВВ, и средство возбуждения детонации, согласно изобретению детонационный канал заполнен октогеном β-модификации, имеющим возможность перехода в δ-модификацию, при этом, по крайней мере, часть канала выполнена с поперечным размером меньше критического диаметра взрывчатого вещества, а корпус выполнен из термостойкого материала с плотностью 2,1-2,5 г/см3. Длина части канала с поперечным размером меньше критического диаметра ВВ, составляет не менее 8 его поперечных размеров. Для перехода октогена β-модификации в δ-модификацию предусмотрено средство для нагрева его до 180-200°С. Для этого на участке минимального сечения детонационного канала может быть установлен нагревательный элемент или средством для нагрева октогена может быть окружающая среда, например, в нефтяной скважине.

В заявляемом устройстве в отличие от прототипа корпус (плата) выполнен из термостойкого инертного материала, сохраняющего свои свойства до 250°С, плотностью 2,1-2,5 г/см3, в котором выполнен детонационный канал, содержащий участок с поперечным размером меньше критического диаметра передачи детонации. В качестве взрывчатого вещества используется кристаллическое бризантное термостойкое вещество октоген (циклотетраметилентетранитрамин, НМХ), изначально находящееся в стабильной кристаллической β-модификации. Кроме термостойкости октоген обладает свойством полиморфизма, т.е. способен при изменении температуры (нагревании) менять свою кристаллическую структуру, в частности β-модификация октогена при нагревании от исходной температуры до температуры 170°С и выше (до 200°С) переходит в δ-модификацию. Процесс перехода октогена из одной модификации в другую приводит к повышению его чувствительности к механическим воздействиям и уменьшает критический диаметр передачи детонации более чем в 2 раза. Данная особенность октогена использована в предлагаемом изобретении. Детонационный канал, выполненный из октогена и имеющий участок сужения с поперечным размером меньше критического диаметра, в исходном состоянии не пропускает детонационный импульс ни в прямом, ни в обратном направлениях. Для того чтобы участок сужения стал пропускать детонационный импульс, его необходимо нагреть до температуры 180-200°С и выдержать 15-30 минут. В качестве нагревательного элемента может быть использована цилиндрическая втулка из пиротехнического состава, охватывающая участок сужения. Воспламеняться пиротехнический состав может от электрического или механического воспламенителя, а также огнепровода. Для варианта предохранительно-детонирующего устройства, применяемого в глубоких скважинах с повышенной температурой до 220°С, нагревательный элемент необязателен: его роль выполняет окружающая среда после погружения в скважину прострелочно-взрывной аппаратуры, включающей предохранительно-детонирующее устройство. Выполнение корпуса из термостойкого материала с плотностью от 2,1 до 2,5 г/см3 обеспечивает механическую прочность устройства при температурах до 220°С, что повышает и надежность срабатывания устройства.

На фиг.1 приведен пример одного из вариантов исполнения предохранительно-детонирующего устройства.

В корпусе 1 из термостойкого материала плотностью 2,2 г/см3 выполнен цилиндрический детонационный канал, заполненный бризантным ВВ 2 - октогеном β-модификации. Детонационный канал диаметром 2,7 мм на одном из участков выполнен с утонением (сужением), диаметр которого составляет 1,5 мм (меньше диаметра ВВ в 1,8 раза) и длина 15 мм (не менее 10 диаметров ВВ). На участке с минимальным сечением установлен электронагревательный элемент 3, выполненный в виде спирали. Устройство имеет два входа (4 и 5) и выход 6.

Устройство работает следующим образом. При подаче на вход 4 детонационного импульса он доходит до участка сужения, и детонация прекращается, если на вход 5 предварительно не поступил управляющий импульс, который запускает нагревательный элемент, обеспечивающий нагрев ВВ на участке сужения до температуры, превышающей температуру полиморфного перехода β-модификации октогена в δ-модификацию. При подаче на вход 5 управляющего импульса ВВ (октоген) на участке сужения нагревается до необходимой температуры, происходит полиморфный переход ВВ в δ-модификацию, при этом существенно увеличивается чувствительность ВВ и уменьшается его критический диаметр. Канал становится способен пропускать детонационный импульс.

Проведено экспериментальное подтверждение работоспособности заявляемого устройства, которое показало, что передача детонационного импульса через устройство, описанное в примере конкретного выполнения, происходит только после подачи управляющего импульса на нагреватель и выдержки при температуре 180°С в течение 25 минут.

Похожие патенты RU2442949C1

название год авторы номер документа
ДЕТОНИРУЮЩЕЕ УСТРОЙСТВО МЕХАНИЧЕСКОГО ВЗРЫВАТЕЛЯ 1999
  • Киселев А.В.
  • Зазнобин В.А.
  • Руденко С.Д.
  • Солдаткин В.А.
  • Лобанов В.Н.
RU2153147C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТОНИРУЮЩЕГО УДЛИНЕННОГО ЗАРЯДА В НЕ РАЗРУШАЕМОЙ ПРИ ВЗРЫВЕ МЕТАЛЛИЧЕСКОЙ ОБОЛОЧКЕ 2015
  • Кузин Евгений Николаевич
  • Загарских Владимир Ильич
  • Кондакова Любовь Викторовна
RU2595132C1
ЗАРЯД-ТРАНСЛЯТОР В УСЛОВНО НЕРАЗРУШАЕМОЙ МНОГОСЛОЙНОЙ ОБОЛОЧКЕ 2014
  • Кузин Евгений Николаевич
  • Загарских Владимир Ильич
  • Волков Андрей Валерьевич
  • Куткина Нина Алексеевна
RU2554166C1
ПРЕДОХРАНИТЕЛЬНО-ДЕТОНИРУЮЩЕЕ УСТРОЙСТВО 2005
  • Брагин Владислав Александрович
  • Егоренков Леонид Семенович
  • Каминский Валерий Григорьевич
  • Лукин Вячеслав Александрович
  • Оськин Игорь Александрович
  • Платонов Николай Александрович
  • Свирщевский Юрий Иванович
RU2304754C2
ДЕТОНИРУЮЩЕЕ УСТРОЙСТВО МЕХАНИЧЕСКОГО ВЗРЫВАТЕЛЯ 2005
  • Вахидов Ринат Марсович
  • Исхаков Тимур Накибович
  • Базотов Виктор Яковлевич
  • Куражов Александр Сергеевич
  • Кузнецов Евгений Павлович
  • Назмиев Руслан Ильгизович
  • Хамидуллин Динар Ильдарович
RU2302607C1
ВЗРЫВНОЙ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ 2022
  • Бадыгеев Айрат Арслангалиевич
RU2794259C1
ДЕТОНИРУЮЩЕЕ УСТРОЙСТВО МЕХАНИЧЕСКОГО ВЗРЫВАТЕЛЯ 2008
  • Леванов Владислав Анатольевич
  • Левин Владимир Генрихович
  • Слепнев Анатолий Викторович
  • Цивилин Валерий Михайлович
  • Марочкин Владимир Александрович
  • Логинов Вадим Николаевич
  • Филипп Ольга Владимировна
RU2392578C2
ДЕТОНИРУЮЩЕЕ УСТРОЙСТВО МЕХАНИЧЕСКОГО ВЗРЫВАТЕЛЯ 1993
  • Зазнобин В.А.
  • Киселев А.В.
  • Краев А.И.
  • Лобанов В.Н.
  • Погорелов В.П.
  • Шевцов В.А.
RU2083948C1
Неразрушаемый транслятор детонации 2016
  • Ефанов Владимир Владимирович
  • Горовцов Виктор Владимирович
  • Кузин Евгений Николаевич
  • Душенок Сергей Адамович
  • Котомин Александр Алексеевич
RU2633848C1
Предохранительно-пусковое устройство детонационных цепей бортовой наземной автоматики 2015
  • Кузин Евгений Николаевич
  • Загарских Владимир Ильич
  • Кондакова Любовь Викторовна
RU2625660C2

Реферат патента 2012 года ПРЕДОХРАНИТЕЛЬНО-ДЕТОНИРУЮЩЕЕ УСТРОЙСТВО

Изобретение относится к области взрывных технологий, применяемых в горнодобывающей и нефтегазовой промышленности, и военной технике и может быть использовано в устройствах предохранения от несанкционированного подрыва. Устройство содержит корпус, по крайней мере, с одним входом и выходом, связанными между собой детонационным каналом, заполненным бризантным взрывчатым веществом, и средство возбуждения детонации. Детонационный канал заполнен октогеном β-модификации с возможностью перехода его в δ-модификацию. По крайней мере, часть детонационного канала выполнена с поперечным размером меньше критического диаметра взрывчатого вещества и длиной не менее 8 его поперечных размеров. Термостойкость устройства составляет не менее 220°С. Обеспечивается механическая прочность и стойкость к воздействию ударов и вибраций. 4 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 442 949 C1

1. Предохранительно-детонирующее устройство, содержащее корпус, по крайней мере, с одним входом и выходом, связанными между собой детонационным каналом, заполненным бризантным взрывчатым веществом, и средство возбуждения детонации, отличающееся тем, что детонационный канал заполнен октогеном β-модификации с возможностью перехода его в δ-модификацию, при этом, по крайней мере, часть канала выполнена с поперечным размером меньше критического диаметра для данного взрывчатого вещества, а корпус выполнен из термостойкого материала с плотностью 2,1-2,5 г/см3.

2. Предохранительно-детонирующее устройство по п.1, отличающееся тем, что длина части канала, выполненная с поперечным размером меньше критического диаметра взрывчатого вещества, составляет не менее 8 его поперечных размеров.

3. Предохранительно-детонирующее устройство по п.1, отличающееся тем, что для перехода октогена β-модификации в δ-модификацию предусмотрено средство для нагрева его до 180-200°С.

4. Предохранительно-детонирующее устройство по п.3, отличающееся тем, что на участке минимального сечения детонационного канала установлен нагревательный элемент.

5. Предохранительно-детонирующее устройство по п.3, отличающееся тем, что средством для нагрева октогена является окружающая среда, например, в нефтяной скважине.

Документы, цитированные в отчете о поиске Патент 2012 года RU2442949C1

ВЗРЫВНАЯ ЛОГИЧЕСКАЯ СХЕМА 2003
  • Герман В.Н.
  • Орликов Ю.П.
  • Александрова С.А.
  • Денденков Ю.П.
  • Фисенко А.К.
RU2247923C1
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ВЗРЫВНОЙ ВОЛНЫ 1997
  • Губачев В.А.
  • Герасимов В.М.
  • Орликов Ю.П.
  • Фисенко А.К.
  • Фомичева Л.В.
  • Герман В.Н.
RU2135935C1
US 3753402 A, 21.08.1973
US 3430563 A, 04.03.1969.

RU 2 442 949 C1

Авторы

Игнатов Олег Леонидович

Лашков Валерий Николаевич

Даты

2012-02-20Публикация

2010-07-29Подача