ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ Российский патент 2012 года по МПК F02K7/04 

Описание патента на изобретение RU2443893C1

Изобретение относится к технике, преимущественно военной, а именно к двигателям летательных аппаратов, и может быть использовано, вероятнее всего, в качестве двигателя небольших беспилотных летательных аппаратов, таких как зенитные, авиационные и тактические ракеты, беспилотные разведчики, летающие мишени и т.п., а также в качестве сбрасываемых дополнительных двигателей.

Известен пульсирующий воздушно-реактивный двигатель (далее ПуВРД) немецкой крылатой ракеты времен Второй мировой войны Фау-1 (см. Г.Б.Синярев, М.В.Добровольский. Жидкостные ракетные двигатели. - Оборонгиз, 1957, с.19, 20). Он представляет собой открытый с обоих торцов канал круглого поперечного сечения, включающий последовательно расположенные входной диффузор, клапанную решетку, камеру сгорания и выходное устройство, состоящее из конфузора и выхлопной трубы, а также систему топливоподачи и систему зажигания с электрозапалом, установленным в камере сгорания. В общем случае входное и выходное устройства двигателя могут иметь форму, отличную от прототипа, поэтому в дальнейшем будем называть их принятыми терминами воздухозаборник и сопло.

Клапанная решетка представляет собой конструкцию из несущих элементов - поперечных стержней, подвижных элементов - плоских упругих пластин постоянной толщины, прикрепленных к боковым граням стержней попарно параллельно друг другу на расстоянии, равном толщине стержня, и опорных проставок, размещенных посредине между парами пластин параллельно им. В каждой паре между пластинами имеется глухой зазор, обращенный назад. Пластины и проставки образуют продольные каналы для прохода воздуха.

Набегающий на двигатель поток проходит через воздухозаборник и клапанную решетку в камеру сгорания. Туда же подается легкоиспаряющееся топливо, после чего топливовоздушная смесь воспламеняется искрой электрозапала. Быстро расширяющиеся во все стороны продукты сгорания, попадая в глухой зазор между пластинами, тормозятся, в результате чего давление там возрастает. Это вызывает изгиб пластин в стороны до контакта с опорными проставками или боковыми стенками. Воздушные каналы клапанной решетки оказываются перекрытыми. Продукты сгорания истекают через сопло в атмосферу, а их давление на закрытую клапанную решетку создает импульс тяги двигателя.

После падения давления пластины клапанной решетки под действием своей упругости, а также разрежения, создаваемого в камере инерцией истекающих газов, возвращаются в исходное положение. В камеру поступает очередная порция воздуха и цикл повторяется.

Клапанная решетка служит основным, но не единственным элементом узла, создающего тягу пульсирующего двигателя и включающего также боковые стенки, детали крепления и др. Кроме того, функцию создания тяги в таком двигателе могут выполнять и другие устройства. Поэтому в дальнейшем будем пользоваться общим термином "тяговый узел" (как часть двигателя) и конкретным - клапанная решетка тягового узла.

Достоинствами ПуВРД с механическими клапанными решетками являются простота и дешевизна, небольшой вес, надежность. Их недостаток - плохие тяговые характеристики, а именно низкая удельная и лобовая тяга, высокий удельный расход топлива, импульсный характер тяги, но главное - низкий ресурс клапанов.

Также известны конструкции ПуВРД, использующие аэродинамические клапаны, "Нестационарное распространение пламени", под ред. Дж.Г.Маркштейна, М., МИР, 1968, с.401-407. Кроме того, ПуВРД, в которых осуществлена замена механических клапанов на аэродинамические, описаны в патентах США №2796735, 1957; №2796734, 1957; №2746529, 1956; №2822037, 1958; №2812635, 1957; №3093962, 1963.

К недостаткам таких ПуВРД следует отнести низкую амплитуду пульсаций давления и, соответственно, низкий термодинамический КПД (коэффициент полезного действия).

Повысить удельную и лобовую тягу и снизить удельный расход топлива можно путем увеличения амплитуды пульсаций давления, которое достигается путем увеличения скорости сгорания топливовоздушной смеси в камере сгорания ПуВРД, при переходе к детонационному горению, осуществленному за счет воспламенения топливовоздушной смеси горящими высокотемпературными струями. Увеличение же амплитуды пульсаций приводит к росту термодинамического КПД и соответственно, к снижению удельного расхода топлива.

Техническим результатом изобретения является повышение термодинамического КПД путем увеличения амплитуды пульсаций давления.

Поставленная техническая задача решается за счет интенсификации процесса массопереноса в камере сгорания, приводящего к росту скорости квазидетонационного горения и соответствующих изменений конструкции ПуВРД и его тягового узла. При этом, под "квазидетонационном" горением подразумевается горение с повышенными скоростями продвижения фронта пламени, составляющими в случае ПуВРД 60-100 м/с. Организация такого режима горения происходит за счет интенсивного массопереноса в камере сгорания. Скорость фронта пламени пропорциональна скорости массопереноса.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном ПуВРД, содержащем, в частности, цилиндрическую камеру сгорания, резонаторную трубу, впускную трубу и форсунки, камера сгорания в головной части разделена на два объема трубчатым или пластинчатым пакетом, при этом первый по ходу течения объем в головной части имеет топливную форсунку и соединен с впускной трубой и форкамерой, установленной напротив форсунки, а второй объем камеры сгорания по ходу течения за трубчатым или пластинчатым элементом снабжен свечами зажигания, установленными за топливными форсунками, и имеет стенки, выполненные с кольцевыми гофрами, и далее соединен с резонаторной трубой.

Сравнение научно-технической и патентной документации на дату приоритета в основной и смежной рубриках МКИ показывает, что совокупность существенных признаков заявленного решения ранее не была известна, следовательно, оно соответствует условию патентоспособности "новизна".

Анализ известных технических решений в данной области техники показал, что предложенное устройство имеет признаки, которые отсутствуют в известных технических решениях, а использование их в заявленной совокупности признаков дает возможность получить новый технический результат, следовательно, предложенное техническое решение имеет изобретательский уровень по сравнению с существующим уровнем техники.

Предложенное техническое решение промышленно применимо, т.к. может быть изготовлено промышленным способом, работоспособно, осуществимо и воспроизводимо, следовательно, соответствует условию патентоспособности "промышленная применимость".

Другие особенности и преимущества заявляемого изобретения станут понятны из следующего детального описания, приведенного исключительно в форме неограничивающего примера и со ссылкой на прилагаемые чертежи, иллюстрирующие предпочтительный вариант реализации, на котором показана схема предлагаемого пульсирующего воздушно-реактивного детонационного двигателя (ПуВРДД).

На фиг.1 представлена схема заявляемого ПуВРДД;

на фиг.2 показан увеличенный фрагмент головной части ПуВРДД по фиг.1 с изображением форкамеры и впускной трубы;

на фиг.3 показано поперечное сечение А-А трубчатого пакета, а на фиг.4 - пластинчатого пакета.

Позициями на фиг.1-4 показаны:

1 - второй объем камеры сгорания,

2 - запальные свечи зажигания,

3 - топливные форсунки, установленные во втором объеме камеры сгорания,

4 - кольцевые гофры,

5 - резонаторная труба,

6 - трубчатый или пластинчатый пакет,

7 - первый объем камеры сгорания,

8 - топливная форсунка, установленная в первом объеме камеры сгорания,

9 - передняя торцевая стенка,

10 - впускная труба,

11 - чашки аэродинамического клапана,

12 - внутренние кольцевые полости (буферные полости),

13 - форкамера,

14 - соединительный канал.

ПуВРДД, представленный на фиг.1-4, содержит камеру сгорания, выполненную из двух объемов. Второй объем 1 камеры сгорания содержит запальные свечи зажигания 2 и топливные форсунки 3. Боковые стенки второго объема 1 за запальными свечами зажигания 2 выполнены с кольцевыми гофрами 4, переходящими в резонаторную трубу 5. Второй объем 1 камеры сгорания отделен от первого объема 7 камеры сгорания трубчатым или пластинчатым (плоскощелевым) пакетом 6. Внутри первого объема 7 камеры сгорания, на ее наружной стенке, установлена топливная форсунка 8, а на передней торцевой стенке 9 закреплена впускная труба 10 с аэродинамическим клапаном из набора профилированных чашек 11 с внутренними кольцевыми полостями (буферными полостями) 12. Также на торцевой стенке 9, напротив топливной форсунки 8, выполнена форкамера 13, соединяющаяся с первым объемом 7 камеры сгорания соединительным каналом 14.

Рабочий цикл ПуВРДД осуществляется следующим образом.

Набегающий воздушный поток через впускную трубу 10 поступает в первый объем 7 камеры сгорания и далее, проходя сквозь трубчатый или пластинчатый пакет 6, попадает во второй объем 1 камеры сгорания. При подаче топлива через топливные форсунки 3 и 8 в обоих объемах 1 и 7 камеры сгорания образуется топливовоздушная смесь. Подача искры на запальные свечи зажигания 2 приводит к вспышке топливовоздушной смеси во втором объеме 1 камеры сгорания. При этом фронт пламени распространяется и вниз и вверх по потоку. При движении вверх пламя проходит через трубчатый или пластинчатый пакет 6 и воспламеняет топливовоздушную смесь в первом объеме 7 камеры сгорания. Вспышка топливовоздушной смеси в первом объеме 7 камеры сгорания приводит к выбросу продуктов сгорания, воздуха и топлива сквозь щели или трубчатые каналы пакета 6 внутрь второго объема 1 камеры сгорания, где в данный момент происходит процесс дефлаграционного горения. Это ускоряет процесс горения во втором объеме 1 камеры сгорания и далее при движении фронта пламени вдоль кольцевых гофр 4, выполняющих роль «Спирали Щепкина», происходит дальнейшее ускорение горения и переход к детонации.

Детонационный взрыв приводит к выбросу продуктов сгорания через резонаторную трубу 5 и впускную трубу 10. При этом происходит заполнение форкамеры 13 смесью воздуха, топлива и высокотемпературных продуктов сгорания. Для уменьшения выброса через впускную трубу 10 она традиционно может быть выполнена с аэродинамическим клапаном в виде набора чашек 11 с внутренними кольцевыми (буферными) полостями 12.

По мере падения давления в первом объеме 7 камеры сгорания начинается ее продувка воздухом из впускной трубы 10 и одновременно выброс высокотемпературных продуктов из форкамеры 13 на топливную форсунку 8, что приводит к интенсификации испарения топлива. Последующее поступление воздуха во второй объем 1 камеры сгорания, куда подается топливо через форсунки 3, приводит к созданию благоприятных условий для воспламенения от запальной свечи зажигания 2. Таким образом, новое воспламенение топлива от запальных свечей зажигания 2 приводит к повторению рабочего цикла.

Описанный рабочий цикл реализует на практике недавно обнаруженный механизм ускорения перехода процесса горения в детонацию при прохождении через трубчатый или пластинчатый пакет 6. Этот механизм описан в книге «Импульсные детонационные двигатели», под редакцией С.М.Фролова, ст. Т.Фудживара «Исследования импульсных детонационных двигателей в Японии», Торус Пресс, М., 2006, с.502. Он позволял в 10 (десять) раз сократить преддетанационное расстояние.

В заявляемой конструкции ПуВРДД применение подобного механизма интенсификации горения позволило получить скорости циклически следующих детонационных фронтов со скоростями до 1500 м/с.

Разумеется, изобретение не ограничивается описанным примером его осуществления, показанным на прилагаемой фигуре. Остаются возможными изменения различных элементов либо замена их технически эквивалентными, не выходящие за пределы объема настоящего изобретения.

Похожие патенты RU2443893C1

название год авторы номер документа
СПОСОБ РЕАЛИЗАЦИИ ЦИКЛИЧЕСКОГО ДЕТОНАЦИОННОГО СГОРАНИЯ В ПУЛЬСИРУЮЩЕМ ВОЗДУШНО-РЕАКТИВНОМ ДВИГАТЕЛЕ 2011
  • Мигалин Константин Валентинович
  • Сиденко Алексей Ильич
  • Мигалин Кирилл Константинович
RU2493399C2
Способ форсирования двухконтурного эжекторного пульсирующего воздушно-реактивного двигателя и форсированный двухконтурный эжекторный пульсирующий воздушно-реактивный двигатель 2021
  • Мигалин Константин Валентинович
  • Сиденко Кирилл Алексеевич
  • Мигалин Кирилл Константинович
RU2760339C1
ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ 2005
  • Мигалин Константин Валентинович
  • Сиденко Алексей Ильич
  • Мигалин Кирилл Константинович
RU2300005C2
ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ 2005
  • Мигалин Константин Валентинович
  • Сиденко Алексей Ильич
  • Мигалин Кирилл Константинович
RU2300004C2
Способ двухконтурной продувки пульсирующего воздушно-реактивного двигателя и двухконтурный пульсирующий воздушно-реактивный двигатель 2015
  • Мигалин Константин Валентинович
  • Сиденко Алексей Ильич
RU2608427C1
Способ форсирования двухконтурного эжекторного пульсирующего воздушно-реактивного двигателя и форсированный двухконтурный эжекторный пульсирующий воздушно-реактивный двигатель 2020
  • Мигалин Константин Валентинович
  • Сиденко Кирилл Алексеевич
  • Мигалин Кирилл Константинович
RU2765672C1
Форсированный двухконтурный эжекторный пульсирующий воздушно-реактивный двигатель 2019
  • Мигалин Константин Валентинович
  • Сиденко Кирилл Алексеевич
RU2717479C1
Способ форсирования двухконтурного эжекторного пульсирующего воздушно-реактивного двигателя и форсированный двухконтурный эжекторный пульсирующий воздушно-реактивный двигатель 2020
  • Сиденко Кирилл Алексеевич
  • Мигалин Константин Валентинович
RU2754796C1
Двухконтурный эжекторный пульсирующий воздушно-реактивный двигатель 2020
  • Мигалин Константин Валентинович
  • Сиденко Кирилл Алексеевич
  • Сиденко Алексей Ильич
  • Мигалин Кирилл Константинович
RU2749083C1
ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ 2010
  • Мигалин Константин Валентинович
  • Сиденко Алексей Ильич
  • Мигалин Кирилл Константинович
  • Мусатов Сергей Игоревич
  • Ужегов Павел Николаевич
RU2435977C1

Иллюстрации к изобретению RU 2 443 893 C1

Реферат патента 2012 года ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ

Изобретение относится к технике, преимущественно военной, а именно к двигателям летательных аппаратов, и может быть использовано, вероятнее всего, в качестве двигателя небольших беспилотных летательных аппаратов, таких как зенитные, авиационные и тактические ракеты, беспилотные разведчики, летающие мишени и т.п., а также в качестве сбрасываемых дополнительных двигателей. Пульсирующий воздушно-реактивный детонационный двигатель содержит, в частности, цилиндрическую камеру сгорания, резонаторную трубу, впускную трубу и форсунки. Камера сгорания в головной части разделена на два объема трубчатым или пластинчатым пакетом. Первый по ходу течения объем в головной части имеет топливную форсунку и соединен с впускной трубой и форкамерой, установленной напротив форсунки. Второй объем камеры сгорания по ходу течения за трубчатым или пластинчатым элементом снабжен свечами зажигания, установленными за топливными форсунками, и имеет стенки, выполненные с кольцевыми гофрами, и далее соединен с резонаторной трубой. Изобретение направлено на повышение термодинамического кпд путем увеличения амплитуды пульсаций давления. 4 ил.

Формула изобретения RU 2 443 893 C1

Пульсирующий воздушно-реактивный детонационный двигатель, содержащий, в частности, цилиндрическую камеру сгорания, резонаторную трубу, впускную трубу и форсунки, отличающийся тем, что камера сгорания в головной части разделена на два объема трубчатым или пластинчатым пакетом, при этом первый по ходу течения объем в головной части имеет топливную форсунку и соединен с впускной трубой и форкамерой, установленной напротив форсунки, а второй объем камеры сгорания по ходу течения за трубчатым или пластинчатым элементом снабжен свечами зажигания, установленными за топливными форсунками, и имеет стенки, выполненные с кольцевыми гофрами и далее соединен с резонаторной трубой.

Документы, цитированные в отчете о поиске Патент 2012 года RU2443893C1

Пульсирующий воздушно-реактивный двигатель 1949
  • Давыдов В.С.
SU88284A1
US 3533239 A, 13.10.1970
US 3824787 A, 23.07.1974
Устройство для определения огнегасящей концентрации при подаче мелкодисперсных составов сверху под давлением 2020
  • Полтавец Денис Владимирович
  • Бухтояров Дмитрий Викторович
  • Казаков Алексей Васильевич
  • Попов Алексей Викторович
  • Григорьев Алексей Владимирович
RU2750733C1
US 4173122 A, 09.05.1989
ПУЛЬСИРУЮЩИЙ ДВИГАТЕЛЬ ДЕТОНАЦИОННОГО ГОРЕНИЯ ТИПА ПОРФЕД 1997
  • Ермишин А.В.
  • Поршнев В.А.
  • Федорец О.Н.
RU2142058C1

RU 2 443 893 C1

Авторы

Мигалин Константин Валентинович

Сиденко Алексей Ильич

Мигалин Кирилл Константинович

Амброжевич Александр Владимирович

Ларьков Сергей Николаевич

Даты

2012-02-27Публикация

2010-07-02Подача