СПОСОБ И УСТРОЙСТВО ИНДУКЦИОННОГО НАГРЕВА ЖИДКОСТЕЙ (ВАРИАНТЫ) Российский патент 2012 года по МПК H05B6/06 

Описание патента на изобретение RU2444864C2

Изобретение относится к способам и устройствам индукционного нагрева текучих сред и может быть использовано для нагрева жидкостей, в том числе воды, в стальных изделиях типа резервуаров, емкостей, трубопроводов, радиаторов, посуды через металлические стенки.

Известен способ и устройство для индукционного нагрева жидкостей в резервуарах путем создания переменного электромагнитного поля на промышленной частоте 50 Гц внутри стального герметичного корпуса, погружаемого в емкость с жидкостью. При этом указанный герметичный корпус нагревается и передает тепло жидкости. В таком индукционном нагревателе первичным контуром своего рода трансформатора является катушка, а вторичным контуром (теплообменником) является материал стенок нагреваемого электромагнитным полем корпуса (см., например, патент РФ 2002383 и патент РФ 2002384. Индукционный нагреватель жидкости. БИ 39-40, 1993).

Недостатками этого способа и устройства индукционного нагрева жидкостей являются ограниченные условия эксплуатации, связанные с необходимостью встраивать или погружать нагреватель в емкость с жидкостью, что не всегда приемлемо, при этом встраиваемый или погружаемый нагреватель занимает значительный полезный объем емкости с нагреваемой жидкостью. Недостатком является также сложность теплопередачи от первичной обмотки, особенно по мере накопления накипи и осаждения солей на стенках корпуса нагревателя, и возможность появления опасного электрического потенциала в нагреваемой жидкости при пробое изоляции. Другим недостатком данного способа и устройства являются также повышенные потери энергии в проводах подводящего двухжильного кабеля, увеличивающие металлоемкость и снижающие надежность работы водонагревательной электротехнологической установки, а также возможность короткого замыкания в подводящих соединительных проводах.

В качестве прототипа способа и устройства индукционного нагрева жидкостей использован известный индукционный нагреватель жидкостей в емкостях, в которых катушки индуктора (первичного контура) выполнены различной формы в соответствии с формой поверхности стенки нагреваемой емкости, что обеспечивает лучшую равномерность нагрева по ее поверхности, и имеется возможность близкого расположения катушек к поверхности емкости с жидкостью, что снижает поля рассеяния электромагнитного поля и повышает эффективность нагрева (см., например, пат. РФ 2098928. Низкочастотный индукционный нагреватель. 1997).

В таких индукционных нагревателях между индуктором и нагреваемой стенкой или дном емкости с жидкостью нет дополнительных металлических корпусов, поэтому индукционное электромагнитное поле беспрепятственно проходит через немагнитную стеклокерамическую защитную панель (крышку) на нагреваемую емкость. Тем самым тепло передается от источника сразу к емкости, не нагревая по пути рабочую поверхность защитного корпуса (панели), в результате чего снижаются потери тепловой энергии и расход затрачиваемой электроэнергии.

Недостатками известного индукционного нагревателя является низкий КПД из-за того, что частота электромагнитного поля не находится в области частот максимальных электромагнитных потерь на вихревые токи в материале емкости с жидкостью (вторичной обмотки), а также значительные непроизводительные затраты электроэнергии на нагрев из-за потерь в первичном контуре, повышенные потери энергии в проводах подводящего двухжильного кабеля, увеличивающие металлоемкость и снижающие надежность работы водонагревателей, а также возможность короткого замыкания в подводящих соединительных проводах.

Задачей предлагаемого изобретения является создание способа и устройства индукционного нагрева жидкостей, обеспечивающего снижение потерь энергии при нагреве жидкостей, снижение потерь в подводящих проводах, исключение короткого замыкания в линии электропитания, снижение металлоемкости и повышение производительности индукционного нагревателя, повышение КПД и эффективности нагрева жидкостей путем снижения энергозатрат, повышение надежности и эффективности работы установки.

В результате использования предлагаемого изобретения снижаются потери энергии, металлоемкость устройства, повышается эффективность и надежность работы установки.

Вышеуказанный технический результат достигается тем, что в предлагаемом способе индукционного нагрева жидкостей путем создания переменного магнитного поля и воздействия созданным полем на материал нагреваемой емкости с жидкостью, для нагрева емкости с жидкостью создают резонансный автоколебательный режим электромагнитного поля повышенной частоты f0=1-100 кГц в индукторной обмотке нагревателя и воздействуют полученным электромагнитным полем на материал нагреваемой емкости и жидкости в области частот максимальных потерь в материале емкости, при этом измеряют температуру нагреваемой жидкости на выходе из емкости, сравнивают с заданной величиной и в соответствии с этим поддерживают температуру нагреваемой жидкости в заданных параметрах изменением скорости подачи потока через емкость индукционного нагревателя и временем нагрева жидкости индукционным нагревателем.

В другом варианте способа индукционного нагрева жидкостей путем создания переменного магнитного поля и воздействия созданным полем на материал нагреваемой емкости с жидкостью для нагрева емкости с жидкостью создают резонансный автоколебательный режим электромагнитного поля повышенной частоты f0=1-100 кГц в индукторной обмотке и воздействуют полученным электромагнитным полем на материал нагреваемой емкости и жидкости в области частот максимальных потерь в материале емкости, а передачу электромагнитной энергии от преобразователя к индукторной обмотке осуществляют при помощи высокочастотного резонансного трансформатора по однопроводной волноводной линии, при этом измеряют температуру нагреваемой жидкости на выходе из емкости, сравнивают с заданной величиной и в соответствии с этим поддерживают температуру нагреваемой жидкости в заданных параметрах изменением напряжения питания индукторной обмотки индукционного нагревателя.

Технический результат достигается также тем, что в предлагаемом устройстве для индукционного нагрева жидкостей, содержащем первичную обмотку и нагреваемую емкость с жидкостью, индукторная обмотка нагревателя включена в резонансный автоколебательный контур с преобразователем частоты и резонансной емкостью, частота которого находится в области частот максимальных электромагнитных потерь в нагреваемом материале емкости с жидкостью, причем нагреваемая емкость снабжена изолирующими вставками, покрыта слоем электрической изоляции, снабжена датчиком температуры нагреваемой жидкости, установленном на выходе из емкости, а датчик температуры связан через задатчик с блоком управления электронасосом, регулирующим скорость подачи потока жидкости через емкость и время нагрева жидкости, для поддержания температуры нагреваемой жидкости в заданных параметрах.

В другом варианте в устройстве для индукционного нагрева жидкостей, содержащем первичную обмотку, нагреваемую емкость с жидкостью, индукторная обмотка нагревателя включена по однопроводной волноводной линии, при помощи высокочастотного резонансного трансформатора через один высоковольтный вывод высоковольтной обмотки в резонансный автоколебательный контур, содержащий низковольтную обмотку высокочастотного резонансного трансформатора, две резонансные емкости и преобразователь частоты, при этом частота резонансного контура, находится в области частот максимальных электромагнитных потерь в нагреваемом материале емкости с жидкостью, причем нагреваемая емкость снабжена изолирующими вставками, покрыта слоем электрической изоляции, снабжена датчиком температуры нагреваемой жидкости, установленном на выходе из емкости, а датчик температуры связан через задатчик с преобразователем напряжения и частоты, изменяющим величину напряжения питания индукторной обмотки индукционного нагревателя.

В устройстве для индукционного нагрева жидкостей к однопроводной волноводной линии одного вывода высокочастотного резонансного трансформатора подключены индукторные обмотки нескольких электроводонагревателей, соизмеримых по мощности с мощностью источника энергии, а в качестве естественной электрической емкости использована общая емкость индукторной обмотки с металлической емкостью и жидкостью или емкость заземляющего контура.

На фиг.1 и 2 представлены схемы реализации предлагаемого способа индукционного нагрева жидкостей и устройства для его осуществления.

На фиг.1 представлен способ индукционного нагрева жидкостей и устройство с питанием по двухпроводной схеме.

На фиг.2 представлен способ индукционного нагрева жидкостей и устройство с питанием по однопроводной схеме с использованием высокочастотного резонансного трансформатора.

Согласно фиг.1, устройство содержит источник питания 1, соединенный с преобразователем частоты и напряжения 2, который через резонансный конденсатор 3 и провода 4 соединен с индукторной обмоткой 5 резонансного высокочастотного индукционного водонагревателя 6, имеющего металлическую ферромагнитную емкость 7, покрытую термостойкой защитной изоляцией 8, и электроизолирующие вставки 9, установленные на патрубках 10, с нагреваемой жидкостью 11. Снаружи индукторная обмотка 5 резонансного высокочастотного индукционного водонагревателя 6 также покрыта слоем термостойкой защитной изоляции 12. Подача жидкости 11 осуществляется электронасосом 13, электродвигатель которого получает питание от блока управления 14, имеющего задатчик 15 и связанного с источником питания 1, а температура нагреваемой жидкости 11 контролируется датчиком температуры 16, установленном на выходном патрубке 10.

Согласно фиг.2, устройство содержит источник питания 1, соединенный с регулируемым преобразователем частоты и напряжения 2, который через резонансные конденсаторы 3 и провода 4 соединен с первичной низковольтной обмоткой 17 резонансного высокочастотного трансформатора 18, вторичная обмотка 19 которого, своим высоковольтным выводом 20, соединена одним проводом 21 с первым выводом 22 индукторной обмотки 5, расположенной на термостойкой изоляции 8, нагреваемой металлической емкости 7, в которой находится подаваемая для нагрева жидкость 11, а второй вывод 23 индукторной обмотки 5 соединен с естественной емкостью 24.

Второй низкопотенциальный вывод 25 вторичной обмотки 19 резонансного высокочастотного трансформатора 18 соединен через разделительный конденсатор 26 с землей 27. Металлическая ферромагнитная емкость 7 покрыта термостойкой защитной изоляцией 8 и снабжена электроизолирующими вставками 9, установленными на патрубках 10 с жидкостью 11. Снаружи индукторная обмотка 5 резонансного высокочастотного индукционного водонагревателя 6 также покрыта слоем термостойкой защитной изоляции 12.

На выходном патрубке 10 установлен датчик 16 температуры нагреваемой жидкости 11, связанный через задатчик 15 с регулируемым преобразователем частоты и напряжения 2.

Способ индукционного нагрева жидкостей, согласно схеме фиг.1, осуществляется следующим образом.

Электрическую энергию от источника энергии 1, например электроэнергию напряжения сети, преобразуют преобразователем частоты 2 в электроэнергию повышенной частоты f0=1-100 кГц, при помощи соответствующей емкости С резонансного конденсатора 3 и индуктивности L индукторной обмотки 5 резонансного высокочастотного индукционного водонагревателя 6 создают резонансные колебания тока и напряжения в индукторной обмотке 5, соответствующие ее собственной частоте, и получают максимально возможное выделение электромагнитной энергии и мощности в индукторной обмотке 5 и минимальные потери в подводящих проводах 4, контролируют датчиком 16 температуру нагретой жидкости 11, сравнивают с заданным задатчиком 15 значением и изменяют скорость подачи жидкости через нагреваемую емкость 7, при этом обеспечивают защиту резонансного высокочастотного индукционного водонагревателя 6 и его обмотку 5 от перегрева, перенапряжения, выноса потенциала, повреждения и пробоя электрической изоляции.

Способ индукционного нагрева жидкостей, согласно схеме фиг.2, осуществляется следующим образом.

Электрическую энергию от источника энергии 1, например электроэнергию напряжения сети, преобразуют регулируемым преобразователем частоты и напряжения 2 в электроэнергию повышенной частоты f0=1-100 кГц при помощи соответствующей емкости С резонансных конденсаторов 3 и индуктивности L первичной обмотки 17 высокочастотного резонансного трансформатора 18, создавая резонансные колебания тока и напряжения, повышают по напряжению с помощью вторичной обмотки 19 высокочастотного резонансного трансформатора 18 и подают электрическую энергию с высоковольтного вывода 20 по однопроводной волноводной линии 21 на первый вывод 22 индукторной обмотки 5, резонансного высокочастотного индукционного водонагревателя 6 и создают резонансные колебания тока и напряжения в индукторной обмотке 5, соответствующие ее собственной частоте, и получают максимально возможное выделение электромагнитной энергии и мощности в индукторной обмотке 5 и минимальные потери в подводящих проводах 4.

Датчиком 16 контролируют температуру нагретой жидкости 11, сравнивают ее с заданным задатчиком 15 значением и изменяют величину питающего напряжения резонансного трансформатора 18 и, соответственно, напряжение питания и мощность, выделяемую в индукторной обмотке 5 индукционного водонагревателя 6 для нагрева жидкости 11, проходящей через нагреваемую емкость 7, при этом обеспечивают защиту резонансного высокочастотного индукционного водонагревателя 6 и его обмотку 5 от выноса потенциала в систему трубопровода, используя электроизолирующие вставки 9 на патрубках 10, предотвращают возможность перегрева, перенапряжения, повреждения и пробоя электрической изоляции.

Устройство согласно схеме фиг.1 работает следующим образом.

Электрическая энергия от источника питания 1 поступает на преобразователь частоты 2, преобразующий электрическую энергию напряжения сети источника питания 1 в электроэнергию повышенной частоты f0=1-100 кГц, которую через резонансный конденсатор 3 и провода 4 подают на вход индукторной обмотки 5 резонансного высокочастотного индукционного водонагревателя 6. При этом частота напряжения питания индукторной обмотки 5, генерируемая преобразователем частоты 2, соответствует ее собственной частоте. Питание осуществляется в резонансном режиме работы контура LC с обмоткой 5 и резонансным конденсатором 3, при котором происходит максимально возможное выделение электромагнитной энергии в индукторной обмотке 5 (в области частот максимальных потерь в материале емкости) и минимальные потери в подводящих проводах 4.

Подача жидкости 11 осуществляется электронасосом 13, электродвигатель которого получает питание от блока управления 14, имеющего задатчик 15 и связанного с источником питания 1, а температура нагреваемой жидкости 11 контролируется датчиком температуры 16, установленном на выходном патрубке 10. Сигнал датчика 16 контроля температуры нагретой жидкости 11, сравнивают с заданным задатчиком 15 значением и через блок управления 14 изменяют скорость подачи жидкости 11 электронасосом 13, через нагреваемую емкость 7.

Термостойкая изоляция 8 защищает обмотку от нагреваемой металлической емкости 7, слой термостойкой защитной изоляции 12 служит для обеспечения надежной электроизоляции, а электроизолирующие вставки 9 на патрубках 10 предотвращают возможность выноса опасного электрического потенциала в систему трубопровода, в которой работает резонансный индукционный водонагреватель 6 жидкости 11.

Преобразователь частоты 2 может получать питание от однофазной, трехфазной электрической сети или любого другого источника электрической энергии 1.

Устройство согласно схеме фиг.2 работает следующим образом.

Электрическая энергия от источника питания 1 поступает на регулируемый преобразователь частоты и напряжения 2, преобразующего электрическую энергию напряжения сети источника питания 1 в электроэнергию повышенной частоты f0=1-100 кГц, которую через резонансные конденсаторы 3 и провода 4 подают на низковольтную обмотку 17 повышающего высокочастотного резонансного трансформатора 18 и создают резонансные колебания тока и напряжения в первичной обмотке 17.

При этом с помощью вторичной обмотки 19 повышают напряжение и подают электрическую энергию с высоковольтного вывода 20 по однопроводной волноводной лини 21 на первый вывод 22 индукторной обмотки 5, расположенной на термостойкой изоляции 8, нагреваемой металлической емкости 7, резонансного высокочастотного индукционного водонагревателя 6, в которой находится подаваемая для нагрева жидкость 11. Второй вывод 23 индукторной обмотки 5 соединен с естественной емкостью 24. Второй низкопотенциальный вывод 25 обмотки резонансного высокочастотного трансформатора 18 соединен через разделительный конденсатор 26 с землей 27.

Таким образом, электрическую энергию от источника энергии 1 преобразуют по частоте в преобразователе частоты 2, повышают по напряжению с помощью повышающего высокочастотного резонансного трансформатора 18 и создают резонансные колебания тока и напряжения в первичной обмотке 17, вторичной обмотке 19, в однопроводной волноводной линии 21 и индукторной обмотке 5 с частотой f0=1-100 кГц, равной частоте преобразователя частоты 2.

Сигнал датчика 16 температуры нагреваемой жидкости 11, установленный на выходном патрубке 10, поступает на задатчик 15, который через регулируемый преобразователь частоты и напряжения 2 изменяет величину напряжения, подаваемого на обмотку 17 повышающего высокочастотного резонансного трансформатора 18, который изменяет величину напряжения на вторичной обмотке 19, а также через высоковольтный вывод 20 с однопроводной волноводной линией 21, на индукторной обмотке 5 резонансного высокочастотного индукционного водонагревателя 6 до установленного значения величины сигнала задатчика 15.

Частота напряжения питания резонансного трансформатора 18 и индукторной обмотки 5, генерируемая преобразователем частоты 2, соответствует их собственной резонансной частоте. Питание резонансного трансформатора 18 осуществляется в резонансном режиме работы контура LC с обмоткой 17 и резонансными конденсаторами 3, при котором происходит передача электрической энергии по однопроводной линии 21 к индукторной обмотке 5 с минимальными потерями в подводящей однопроводной волноводной линии 21 и максимально возможным выделением электромагнитной энергии в индукторной обмотке 5.

Термостойкая изоляция 8 защищает обмотку от нагреваемой металлической емкости 7, слой термостойкой защитной изоляции 12 служит для обеспечения надежной электроизоляции, а электроизолирующие вставки 9 на патрубках 10 предотвращают возможность выноса опасного электрического потенциала в систему трубопровода, в которой работает резонансный индукционный водонагреватель 6 жидкости 11. Преобразователь частоты 2 может получать питание от однофазной, трехфазной электрической сети или любого другого источника электрической энергии 1.

Так как однопроводная волноводная линия 21 относительно обмотки 19 разомкнута, между током и напряжением существует фазовый сдвиг 90 градусов. Ток опережает напряжение на 90 градусов и перезаряжает емкость индукторной обмотки 5 резонансного высокочастотного индукционного водонагревателя 6 и естественную емкость 24.

Электромагнитная энергия в виде потока волн тока и напряжения перемещается от вывода 20 с высоким потенциалом через индукторную обмотку 5 к естественной емкости 24 с более низким потенциалом вдоль эквипотенциальных линий кулонова электрического поля, поэтому джоулевы потери энергии в незамкнутой однопроводной волноводной линии 21 малы.

К однопроводной волноводной линии одного вывода высокочастотного резонансного трансформатора могут быть подключены индукторные обмотки нескольких электроводонагревателей, соизмеримых по мощности с мощностью источника энергии, а в качестве естественной электрической емкости может быть использована общая емкость индукторной обмотки с металлической емкостью и жидкостью или емкость заземляющего контура.

Воздействие на стенку нагреваемой емкости с жидкостью переменным магнитным полем с частотой в области частоты максимальных потерь в материале металлической емкости 7 повышает КПД нагревателя. Так, например, для материала емкости из нержавеющей стали частота максимальных электромагнитных потерь находится в области 30 кГц, при этом КПД нагревателя составляет не менее 80%. Если частота электромагнитного поля будет 50 Гц, то для емкости из нержавеющей стали КПД нагревателя не превысит 10-20%.

Создание электромагнитного поля на резонансной частоте в автоколебательном режиме первичного резонансного контура водонагревателя позволяет снизить расход электроэнергии на нагрев за счет использования резонансных свойств электроводонагревателя.

Похожие патенты RU2444864C2

название год авторы номер документа
СПОСОБ ОБРАБОТКИ ЖИДКОСТЕЙ ПЕРЕМЕННЫМ ЭЛЕКТРОМАГНИТНЫМ ПОЛЕМ 2018
  • Кукушкин Владимир Юрьевич
RU2701926C1
БЕСКОНТАКТНЫЙ СПОСОБ ПИТАНИЯ ЭЛЕКТРОТРАНСПОРТНЫХ СРЕДСТВ 2011
  • Стребков Дмитрий Семенович
  • Некрасов Алексей Иосифович
  • Трубников Владимир Захарович
  • Королев Владимир Александрович
RU2505427C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2009
  • Трубников Владимир Захарович
  • Некрасов Алексей Иосифович
  • Стребков Дмитрий Семенович
  • Харагезов Евгений Иванович
  • Королев Владимир Александрович
  • Некрасов Антон Алексеевич
RU2473160C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2009
  • Стребков Дмитрий Семенович
  • Трубников Владимир Захарович
  • Некрасов Алексей Иосифович
  • Некрасов Антон Алексеевич
RU2409883C1
СПОСОБ БЕСПРОВОДНОЙ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Стребков Дмитрий Семенович
  • Юферев Леонид Юрьевич
  • Верютин Василий Иванович
  • Рощин Олег Алексеевич
  • Трубников Владимир Захарович
RU2411142C2
СВЕТОДИОДНЫЙ СВЕТИЛЬНИК (ВАРИАНТЫ) 2009
  • Стребков Дмитрий Семенович
  • Юферев Леонид Юрьевич
  • Рощин Олег Алексеевич
RU2409916C1
СПОСОБ ПИТАНИЯ ЭЛЕКТРООЗОНАТОРА 2005
  • Стребков Дмитрий Семенович
  • Некрасов Алексей Иосифович
  • Некрасов Антон Алексеевич
RU2310138C2
СПОСОБ И УСТРОЙСТВО ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ (ВАРИАНТЫ) 2010
  • Юферев Леонид Юрьевич
  • Стребков Дмитрий Семенович
RU2423772C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ (ВАРИАНТЫ) 2010
  • Стребков Дмитрий Семенович
  • Юферев Леонид Юрьевич
RU2474031C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2010
  • Стребков Дмитрий Семенович
  • Рощин Олег Алексеевич
  • Богданов Андрей Юрьевич
RU2459340C2

Иллюстрации к изобретению RU 2 444 864 C2

Реферат патента 2012 года СПОСОБ И УСТРОЙСТВО ИНДУКЦИОННОГО НАГРЕВА ЖИДКОСТЕЙ (ВАРИАНТЫ)

Изобретение относится к способам и устройствам индукционного нагрева текучих сред и может быть использовано для нагрева жидкостей, в том числе воды, в стальных изделиях типа резервуаров, емкостей, трубопроводов, радиаторов, посуды через металлические стенки. Задачей предлагаемого изобретения является создание способа и устройства индукционного нагрева жидкостей, обеспечивающего снижение потерь энергии при нагреве жидкостей, снижение потерь в подводящих проводах, повышение КПД и эффективности нагрева жидкостей. Технический результат достигается тем, что в предлагаемом способе и реализующем его устройстве для нагрева емкости с жидкостью создают резонансный автоколебательный режим электромагнитного поля повышенной частоты f0=1-100 кГц в индукторной обмотке нагревателя и воздействуют полученным электромагнитным полем на материал нагреваемой емкости и жидкости в области частот максимальных потерь в материале емкости, при этом измеряют температуру нагреваемой жидкости на выходе из емкости, сравнивают с заданной величиной и в соответствии с этим поддерживают температуру нагреваемой жидкости в заданных параметрах. В другом варианте способа и устройства передачу электромагнитной энергии от преобразователя к индукторной обмотке осуществляют при помощи высокочастотного резонансного трансформатора по однопроводной волноводной линии. 4 н. и 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 444 864 C2

1. Способ индукционного нагрева жидкостей путем создания переменного магнитного поля и воздействия созданным полем на материал нагреваемой емкости с жидкостью, отличающийся тем, что для нагрева емкости с жидкостью создают резонансный автоколебательный режим электромагнитного поля повышенной частоты f0=1-100 кГц в индукторной обмотке нагревателя и воздействуют полученным электромагнитным полем на материал нагреваемой емкости и жидкости в области частот максимальных потерь в материале емкости, при этом измеряют температуру нагреваемой жидкости на выходе из емкости, сравнивают с заданной величиной и в соответствии с этим поддерживают температуру нагреваемой жидкости в заданных параметрах изменением скорости подачи потока через емкость индукционного нагревателя и временем нагрева жидкости индукционным нагревателем.

2. Способ индукционного нагрева жидкостей путем создания переменного магнитного поля и воздействия созданным полем на материал нагреваемой емкости с жидкостью, отличающийся тем, что для нагрева емкости с жидкостью создают резонансный автоколебательный режим электромагнитного поля повышенной частоты f0=1-100 кГц в индукторной обмотке и воздействуют полученным электромагнитным полем на материал нагреваемой емкости и жидкости в области частот максимальных потерь в материале емкости, а передачу электромагнитной энергии от преобразователя к индукторной обмотке осуществляют при помощи высокочастотного резонансного трансформатора по однопроводной волноводной линии, при этом измеряют температуру нагреваемой жидкости на выходе из емкости, сравнивают с заданной величиной и в соответствии с этим поддерживают температуру нагреваемой жидкости в заданных параметрах изменением напряжения питания индукторной обмотки индукционного нагревателя.

3. Устройство для индукционного нагрева жидкостей, содержащее первичную обмотку и нагреваемую емкость с жидкостью, отличающееся тем, что индукторная обмотка нагревателя включена в резонансный автоколебательный контур с преобразователем частоты и резонансной емкостью, частота которого находится в области частот максимальных электромагнитных потерь в нагреваемом материале емкости с жидкостью, причем нагреваемая емкость снабжена изолирующими вставками, покрыта слоем электрической изоляции, снабжена датчиком температуры нагреваемой жидкости, установленным на выходе из емкости, а датчик температуры связан через задатчик с блоком управления электронасосом, регулирующим скорость подачи потока жидкости через емкость и время нагрева жидкости, для поддержания температуры нагреваемой жидкости в заданных параметрах.

4. Устройство для индукционного нагрева жидкостей, содержащее первичную обмотку, нагреваемую емкость с жидкостью, отличающееся тем, что индукторная обмотка нагревателя включена по однопроводной волноводной линии при помощи высокочастотного резонансного трансформатора через один высоковольтный вывод высоковольтной обмотки в резонансный автоколебательный контур, содержащий низковольтную обмотку высокочастотного резонансного трансформатора, две резонансные емкости и преобразователь частоты, при этом частота резонансного контура находится в области частот максимальных электромагнитных потерь в нагреваемом материале емкости с жидкостью, причем нагреваемая емкость снабжена изолирующими вставками, покрыта слоем электрической изоляции, снабжена датчиком температуры нагреваемой жидкости, установленным на выходе из емкости, а датчик температуры связан через задатчик с преобразователем напряжения и частоты, изменяющим величину напряжения питания индукторной обмотки индукционного нагревателя.

5. Устройство для индукционного нагрева жидкостей по п.4, отличающееся тем, что к однопроводной волноводной линии одного вывода высокочастотного резонансного трансформатора подключены индукторные обмотки нескольких электроводонагревателей, соизмеримых по мощности с мощностью источника энергии, а в качестве естественной электрической емкости использована общая емкость индукторной обмотки с металлической емкостью и жидкостью или емкость заземляющего контура.

Документы, цитированные в отчете о поиске Патент 2012 года RU2444864C2

УСТРОЙСТВО ДЛЯ ИНДУКЦИОННОГО НАГРЕВА И СПОСОБ УПРАВЛЕНИЯ УСТРОЙСТВОМ ДЛЯ ИНДУКЦИОННОГО НАГРЕВА 2002
  • Лузгин В.И.
  • Петров А.Ю.
  • Черных И.В.
  • Шипицин В.В.
  • Якушев К.В.
RU2231905C2
УСТРОЙСТВО ИНДУКЦИОННОГО НАГРЕВА 2008
  • Игольников Юрий Соломонович
  • Буерин Игорь Николаевич
RU2380862C1
Двухзонная установка для индукционного нагрева 1983
  • Иванов Александр Васильевич
  • Мульменко Михаил Михайлович
SU1092758A1
ПРИБОР ДЛЯ РАССМАТРИВАНИЙ ОТДАЛЕННЫХ СТЕРЕОПРОЕКЦИЙ 1920
  • Кауфман А.К.
SU4546A1
УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА КОПТИЛЬНОЙ ЖИДКОСТИ 1992
  • Квасенков О.И.
  • Касьянов Г.И.
RU2020826C1

RU 2 444 864 C2

Авторы

Стребков Дмитрий Семенович

Некрасов Алексей Иосифович

Уфимцев Сергей Алексеевич

Некрасов Антон Алексеевич

Даты

2012-03-10Публикация

2010-03-11Подача