Заявляемый пьезоэлектрический преобразователь используется в приборостроении для передачи звуковой энергии в жидкость или приема звуковой энергии из жидкости при измерении ее расхода в напорных трубопроводах.
Известен акустический преобразователь, содержащий корпус, в котором установлен пьезоэлемент, контактирующий с демпфером, и протектор, толщиной, равной длины волны в протекторе, рабочая поверхность которого покрыта фольгой из термопластичного материала, например отожженного алюминия [1].
Недостатком этого устройства является то, что фольга не имеет упругих свойств и не обеспечивает работу преобразователя при больших давлениях. Кроме того, алюминий в воде подвержен коррозии, следовательно, изделие будет недолговечным.
Известен пьезоэлектрический преобразователь для расходомера, содержащий пьезоэлемент, установленный между протектором и демпфером и закрепленный в патрубке соосно ему посредством изолятора, одним концом связанного с демпфером, а другим через уплотнительную прокладку с патрубком, отличающийся тем, что изолятор выполнен в виде трубки-фланца и скреплен с демпфером механически [2].
Недостатком этого устройства является то, что для защиты пьезоэлемента от воды протектор и демпфер неизбежно должны выполняться из термореактивной пластмассы на основе эпоксидной смолы, которая не работает длительно при высоких давлениях, не обладает достаточной прочностью для создания герметичного соединения с металлической трубой, не выдерживает температурных циклов.
Наиболее близким по технической сущности к заявляемому является демпфированный ультразвуковой преобразователь для передачи звуковой энергии в жидкость или приема звуковой энергии из жидкости, включающий металлический корпус, имеющий цилиндрическую полость с замыкающей стенкой на одном конце и открытую на противоположном конце, в которой соосно полости последовательно от замыкающей стенки размещены пьезоэлемент, демпфер, пружинящие и плоские шайбы, имеющие диаметр немного меньше диаметра внутренней полости, и затычка с резьбой (ниппель), а также проводники, соединяющие электроды пьезоэлемента с сигнальным кабелем [3].
Недостатком этого технического решения является низкая чувствительность и соотношение сигнал-шум принимаемого сигнала. Это связано с тем, что замыкающая стенка по акустическому сопротивлению материала и по геометрии плохо согласована с жидкостью.
Цель изобретения - повышение эффективности работы устройства путем увеличения чувствительности и соотношения сигнал-шум выходного сигнала при сохранении герметичности преобразователя и работоспособности его при высоких избыточных давлениях.
Поставленная цель достигается тем, что пьезоэлектрический преобразователь содержит металлический корпус, имеющий цилиндрическую полость с замыкающей стенкой на одном конце и открытую на противоположном конце, в которой соосно полости последовательно от замыкающей стенки размещены пьезоэлемент, демпфер, пружинящая шайба, имеющие диаметр немного меньше диаметра внутренней полости, и ниппель, а также проводники, соединяющие электроды пьезоэлемента с сигнальным кабелем или разъемом, отличающийся тем, что замыкающая стенка выполнена в виде мембраны, причем мембрана может быть выполнена за одно целое с корпусом или соединена с ним по контуру сваркой, а пьезоэлемент соединен с мембраной через протектор, толщиной, равной длины ультразвуковой волны в протекторе, с помощью клея и/или поджат к ней пружинящей шайбой, а толщина мембраны h в зависимости от плотности материала определяется из соотношения: h=A/ρ, где A - коэффициент, равный от 0,4 до 4 кг/м2, ρ - плотность материала мембраны в кг/м3.
Сущность изобретения поясняется чертежами, где на фиг.1 показана схема устройства, на фиг.2-5 - материалы, подтверждающие эффективность предлагаемого технического решения, полученные с помощью компьютерного моделирования: на фиг.2а - геометрическая расчетная модель пары преобразователей в жидкости, а на рис.2б - геометрическая модель заявляемого преобразователя. В силу осевой симметрии задачи геометрические модели строились для половины изделия. На фиг.3 показано изменение формы принимаемых сигналов от относительной толщины мембраны из нержавеющей стали: фиг.3а относится к аналогу - преобразователю без мембраны, фиг.3б-ж относятся к заявляемому устройству, фиг.3з - к прототипу - преобразователю с толстой мембраной; на фиг.4 показаны зависимости удельной чувствительности и соотношения сигнал/шум пары преобразователей от толщины мембраны из нержавеющей стали и титана; на фиг.5 показаны зависимости удельной чувствительности преобразователей от произведения толщины мембраны на плотность материала для мембран из стали, титана и дюралюминия. На фиг.6 показан внешний вид преобразователей.
Пьезоэлектрический преобразователь для передачи звуковой энергии в жидкость или приема звуковой энергии из жидкости, фиг.1, содержит металлический корпус (1), имеющий цилиндрическую полость (2) с замыкающей стенкой (3) на одном конце и открытую на противоположном конце, в которой соосно полости последовательно от замыкающей стенки (3) размещены протектор (4), пьезоэлемент (5), демпфер (6), пружинящая шайба (7) и ниппель (8), а также проводники (9), соединяющие электроды пьезоэлемента (5) с сигнальным кабелем или разъемом, отличающийся тем, что замыкающая стенка выполнена в виде мембраны (3), причем мембрана может быть сделана за одно целое с корпусом (1) или соединена с ним по контуру сваркой, а пьезоэлемент (5) соединен с мембраной (3) через протектор (4), толщиной, равной 1/4 длины ультразвуковой волны в протекторе, с помощью клея и/или поджат к ней пружинящей шайбой (7), а толщина мембраны h в зависимости от плотности материала определяется из соотношения: h=A/ρ, где A - коэффициент, равный от 0,4 до 4 кг/м2, ρ - плотность материала мембраны в кг/м3.
Пара пьезоэлектрических преобразователей устанавливается в трубопровод под углом к движущемуся потоку, поочередно возбуждаются электрическими импульсами и принимают акустический сигнал, прошедший через поток. Разность времени прохождения звуковой волны по и против потока является мерой скорости потока и его расхода. Технический результат: повышение чувствительности и соотношения сигнал-шум принимаемого сигнала при сохранении герметичности преобразователя и работоспособности его при высоких избыточных давлениях.
Подтверждением эффективности предлагаемого технического решения являются результаты расчетов характеристик устройства, полученные с помощью компьютерного моделирования. Из фиг.3а-ж следует, что форма принимаемого сигнала для мембран из нержавеющей стали толщиной от 0,1 до 0,7 мм изменяется слабо и соответствует по амплитуде и форме сигналу преобразователей аналогов, т.е. без мембраны. Дальнейшее увеличение толщины мембраны ведет к ухудшению качества принимаемого сигнала - снижению амплитуды и затуханию, фиг.4. В результате снижается удельная чувствительность и соотношение сигнал/шум пары преобразователей. Причем это наблюдается как для мембран из нержавеющей стали, так и титановых сплавов. На фиг.4 Kmax - удельная чувствительность пары преобразователей, когда один из них возбуждается импульсным напряжением 1 В на резонансной частоте и генерирует акустическую волну, а второй принимает акустический сигнал и генерирует электрическое напряжение; Kx - максимальная амплитуда реверберации сигнала, т.е., на расстоянии более 5 периодов от основного пика.
Из фиг.4 также следует, что по мере снижения плотности материала мембраны (сталь - 7,8 кг/дм3, титан - 4,1 кг/дм3) диапазон допустимых толщин мембраны увеличивается. Зависимости удельной чувствительности преобразователей от произведения толщины мембраны на плотность материала, показанные на фиг.5 свидетельствуют о том, что диапазон оптимальной толщины мембраны h в зависимости от плотности материала определяется из соотношения: h=A/ρ, где A - коэффициент, равный от 0,4 до 4 кг/м2, ρ - плотность материала мембраны в кг/м3. Коэффициент A характеризует «поверхностную плотность мембраны» и равен произведению ее толщины на плотность материала, из которого она выполнена.
Теоретические результаты хорошо согласуются с экспериментом. При этом заявленный пьезоэлектрический преобразователь, работающий на частотах 1-2 МГц и выполненный полностью в корпусе из нержавеющей стали с мембраной 0,2 мм, имеет высокую чувствительность и соотношение сигнал/шум, является герметичным, долговечным и сохраняет работоспособность при избыточных давлениях до 35 МПа, фиг.6.
Из приведенных материалов видно, что предложенное техническое решение обеспечивает повышение эффективности работы устройства за счет увеличения чувствительности и соотношения сигнал-шум выходного сигнала при сохранении герметичности преобразователя и работоспособности его при высоких избыточных давлениях.
Источники информации
1. Патент РФ 1755176 А1 от 08/1992.
2. Патент РФ 2079814 от 05/1994.
3. Патент США 4417480 от 3/1993.
название | год | авторы | номер документа |
---|---|---|---|
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2014 |
|
RU2604896C2 |
УЛЬТРАЗВУКОВОЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2020 |
|
RU2739150C1 |
ДАТЧИК УЛЬТРАЗВУКОВОЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ | 2019 |
|
RU2701180C1 |
Ультразвуковой пьезоэлектрический преобразователь | 2021 |
|
RU2776043C1 |
Ультразвуковой пьезопреобразователь Марьина | 1989 |
|
SU1738376A1 |
Пьезоэлектрический преобразователь | 1990 |
|
SU1772724A1 |
УЛЬТРАЗВУКОВОЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2009 |
|
RU2422816C2 |
УЛЬТРАЗВУКОВОЙ ДАТЧИК ДЛЯ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ | 1992 |
|
RU2037143C1 |
Пьезоэлектрический приемник поверхностных волн | 1984 |
|
SU1293629A1 |
СПОСОБ АКУСТИЧЕСКОГО СОГЛАСОВАНИЯ ПЬЕЗОЭЛЕМЕНТА ИММЕРСИОННОГО УЛЬТРАЗВУКОВОГО ПЬЕЗОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ С КОНТРОЛИРУЕМОЙ СРЕДОЙ | 2014 |
|
RU2561778C1 |
Заявляемый пьезоэлектрический преобразователь используется в приборостроении для передачи звуковой энергии в жидкость или приема звуковой энергии из жидкости при измерении ее расхода в напорных трубопроводах. Техническим результатом изобретения является повышение чувствительности и соотношения сигнал-шум принимаемого сигнала при сохранении герметичности преобразователя и работоспособности его при высоких избыточных давлениях. Пьезоэлектрический преобразователь содержит металлический корпус, имеющий цилиндрическую полость с замыкающей стенкой на одном конце и открытую на противоположном конце, в которой соосно полости последовательно от замыкающей стенки размещены протектор, пьезоэлемент, демпфер, пружинящая шайба, имеющие диаметр немного меньше диаметра внутренней полости, и ниппель с отверстием, а также проводники, соединяющие электроды пьезоэлемента с сигнальным кабелем или разъемом. При этом замыкающая стенка выполнена в виде мембраны, причем мембрана может быть выполнена за одно целое с корпусом или соединена с ним по контуру сваркой, а пьезоэлемент соединен с мембраной через протектор, толщиной, равной длины ультразвуковой волны в протекторе, с помощью клея и/или поджат к ней пружинящей шайбой, а толщина мембраны h в зависимости от плотности материала определяется из соотношения: h=A/ρ, где А - коэффициент, равный от 0,4 до 4 кг/м2, ρ - плотность материала мембраны в кг/м3. 6 ил.
Пьезоэлектрический преобразователь для передачи звуковой энергии в жидкость или приема звуковой энергии из жидкости, содержащий металлический корпус, имеющий цилиндрическую полость с замыкающей стенкой на одном конце и открытую на противоположном конце, в которой соосно полости последовательно от замыкающей стенки размещены пьезоэлемент, демпфер, пружинящая шайба, диаметром немного меньше диаметра внутренней полости и ниппель с отверстием, а также проводники, соединяющие электроды пьезоэлемента с сигнальным кабелем или разъемом, отличающийся тем, что замыкающая стенка выполнена в виде мембраны, причем мембрана может быть сделана за одно целое с корпусом или соединена с ним по контуру сваркой, а пьезоэлемент соединен с мембраной через протектор толщиной, равной длины ультразвуковой волны в протекторе, с помощью клея и/или поджат к ней пружинящей шайбой, а толщина мембраны h в зависимости от плотности материала определяется из соотношения: h=A/ρ, где А - коэффициент, равный от 0,4 до 4 кг/м2, ρ - плотность материала мембраны, кг/м3.
0 |
|
SU281673A1 | |
Гидроакустический преобразователь | 1978 |
|
SU777851A1 |
Акустический преобразователь | 1987 |
|
SU1638803A1 |
RU 90554 U1, 10.01.2010 | |||
Двухканальный пьезоэлектрический преобразователь | 1978 |
|
SU745022A1 |
ГИДРОАКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ МНОГОЭЛЕМЕНТНОЙ АНТЕННЫ | 1996 |
|
RU2121771C1 |
СПОСОБ ПОЛУЧЕНИЯ ПЕКТИНОВЫХ ВЕЩЕСТВ | 1991 |
|
RU2065446C1 |
DE 19756462 A1, 24.06.1999. |
Авторы
Даты
2012-03-20—Публикация
2010-08-24—Подача