УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ВИБРАЦИОННЫХ ПАРАМЕТРОВ ОБЪЕКТА Российский патент 2012 года по МПК G01H9/00 

Описание патента на изобретение RU2447410C2

Предлагаемое изобретение относится к области виброметрии широкого класса объектов, включая биологические, и может быть использовано как для определения вибрационных параметров объектов, так и при проведении метрологических поверок, калибровок и испытаний датчиков вибрации.

В настоящее время круг задач, решаемых с помощью виброметрии, достаточно широк - это контроль допустимых уровней вибрации различных объектов, вибродиагностика их состояния и т.д. Методы вибродиагностики подразделяются на контактные и бесконтактные. Контактные методы реализуются путем установки датчиков вибрации непосредственно на вибрирующем объекте (например, пьезоакселерометрических вибропреобразователей или волоконно-оптических сенсоров напряжения на основе решеток с большим периодом). Однако применение контактных методов может быть затруднено, если наложение датчиков вибрации вследствие их конечной массы искажает вибрационные параметры объекта, или объект труднодоступен: находится на большом расстоянии (по горизонтали или вертикали), в условиях высокой температуры, сильных электромагнитных полей, радиоактивного облучения и т.д. В таких случаях применяются бесконтактные (дистанционные) методы контроля вибрационных параметров.

Известно устройство для дистанционного* измерения вибрационных** параметров объекта, основанное на продольном эффекте Доплера [И.Краснощеков, А.Самойлов, В.Типашов, Л.Морозов. Лазерный виброметр повышенной чувствительности. Электроника: Наука, Технология, Бизнес, №6, с.98-101. 2008]. Устройство включает: He-Ne лазер, луч которого делится на два пучка, один из которых является опорным, а другой используется для освещения объекта; телескопическую систему для освещения объекта и сбора диффузно отраженного объектом излучения лазера, которое затем смешивается с опорным пучком; фотоприемные элементы, преобразующие смешанное излучение в электрический сигнал; электронно-вычислительный блок для обработки и анализа

* Под дистанционным мы понимаем бесконтактное дистанционное измерение.

** Под вибрационными параметрами мы понимаем виброскорость, виброперемещение, виброускорение и производные от них величины.

электрического сигнала, снимаемого с фотоприемных элементов; дисплей для отображения измеренных вибрационных параметров объекта.

К основным недостаткам устройства, основанного на продольном эффекте Доплера, относятся: а) необходимость использования лазера с большой длиной когерентности; б) трудность работы с диффузно- рассеивающими объектами из-за формируемых на поверхности фотоприемников спекл-структур; в) сложность устройства прибора.

Известно устройство для дистанционного измерения скорости объекта в плоскости поверхности объекта, основанное на эффекте перемещения спекл-картины, формируемой при диффузном отражении лазерного излучения от движущейся поверхности объекта [P.Šmid, P.Horváth, P.Neumannová, M.Hrabovský. The use of speckle correlation for measurement of object velocity. Proc. of SPIE Vol.6341, 634131, 2006]. Устройство включает лазер, линзу, фокусирующую излучение лазера на объект по нормали к поверхности объекта, камеру с линейным сенсором, расположенную между камерой и объектом линзу, оптическая ось которой направлена под углом к нормали поверхности объекта. При освещении лазером диффузной поверхности объекта на поверхности ФПЗС-линейки камеры формируется спекл-картина. Камера регистрирует и передает в ЭВМ через равные промежутки времени кадры с изображениями формируемой спекл-картины. Перемещение спекл-картины за время между экспозициями двух последовательных кадров вычислялось методом корреляционного анализа этих кадров. Далее, зная период следования кадров и связь между перемещением спекл-картины и перемещением объекта, вычислялась скорость объекта в плоскости поверхности объекта. Основные недостатки устройства: а) малое расстояние до объекта; б) измерение смещения в плоскости объекта только в одном из двух независимых направлений; в) невозможность отличить перемещение спекл-картины, вызванное перемещением объекта в плоскости поверхности, и перемещение, вызванное вращением объекта относительно оси, лежащей в плоскости объекта и перпендикулярной направлению на камеру, что обусловлено тем, что сенсор камеры расположен вне плоскости изображения объекта.

Известно устройство для дистанционного измерения вибрационных параметров объекта, выбранное нами в качестве прототипа [Optischer Schwingungsmesser. W.Georgi. International Exhibition «Hannover Messe - 1998», 20-25 April 1998, Hannover], содержащее телескоп, в плоскости изображения объекта которого размещено фотоприемное устройство в виде ФПЗС-линейки приемников, электрически соединенное с электронно-вычислительным блоком записи, хранения, обработки и отображения информации.

Устройство работает следующим образом. Наводят телескоп на объект, освещенный естественным или искусственным некогерентным светом так, что на поверхности ФПЗС-линейки формируется изображение объекта. Осуществляют считывание и запись последовательных кадров изображений объекта через равные промежутки времени (время экспозиции кадра значительно меньше периода следования кадров). С использованием программы обработки корреляционным методом определяют перемещение Аи изображения объекта за время между экспозициями последовательных кадров. Далее, зная коэффициент М увеличения изображения объекта и период Т следования кадров, определяют среднюю скорость (виброскорость) V объекта в промежутке времени между экспозициями по формуле V=Аи/(МТ).

Недостатками устройства являются: а) высокий порог чувствительности к виброперемещениям; б) существенное снижение точности или невозможность определения виброперемещения однородно освещенного низкоконтрастного объекта; в) необходимость внешних источников освещения.

Нами было показано, что при освещении диффузной поверхности объекта когерентным лазерным излучением формирование высококонтрастной мелкомасштабной спекл-картины именно в плоскости изображения объекта (спеклованного изображения объекта) позволяет существенно увеличить чувствительность, т.е. понизить пороговое значение определяемых виброперемещений (виброскоростей) и увеличить точность определения виброперемещения. Это, в совокупности с применением матричного фотоприемника, позволило определять компоненты вибрации по двум взаимно перпендикулярным осям за одно измерение и увеличить точность определения виброперемещения за счет получения и обработки существенно большего массива информации.

Нами заявлено высокочувствительное высокоточное устройство для дистанционного измерения вибрационных параметров, основанное на простой оптико-электронной схеме. Оно компактно и построено на базе серийных комплектующих.

Такой технический результат достигнут нами, когда устройство для дистанционного измерения вибрационных параметров объекта, преимущественно диффузно-рассеивающего, включающее телескоп с размещенным в его фокальной плоскости объекта цифровым фотоприемным устройством, соединенным с электронно-вычислительным блоком записи, хранения, обработки и отображения информации, установлено на виброизолированном основании и дополнительно содержит источник когерентного излучения, установленный так, что его излучение направлено в область пересечения оптической оси телескопа с поверхностью измеряемого объекта, и размещенный на оптической оси прибора до фотоприемного устройства светоделитель, на оптической оси которого размещен окуляр для визуального наведения на объект, при этом источник излучения снабжен формирователем размера пучка, фотоприемное устройство выполнено в виде информационно связанной с электронно-вычислительным блоком матрицы фотоприемных элементов с электронным затвором, обеспечивающим одновременное экспонирование всех фотоприемных элементов, формирующих кадр, а оптическая ось телескопа установлена перпендикулярно поверхности измеряемого объекта.

Оптическая ось когерентного источника излучения (лазера, лазерного излучателя) может быть установлена под заданным углом к нормали к плоскости поверхности объекта. Подходы к решению этой задачи известны.

Светоделитель может быть выполнен, например, в виде светоделительного куба, полупрозрачного зеркала и т.д. Может быть предусмотрена возможность вывода светоделителя из оптического тракта.

Если необходимо выполнить измерение вибрационных параметров с повышенной точностью, излучение лазера направляют вдоль оптической оси телескопа (см. п.2 Формулы).

Для увеличения чувствительности и точности измерений (за счет уменьшения «смазывания» картины спекл-струкутр при уменьшении времени засветки фотоприемного устройства во время экспозиции) при одновременном уменьшении времени работы лазера, выбирают импульсный источник излучения (см. п.3 Формулы). В этом случае длительность импульса не превышает времени экспозиции фотоприемного устройства, а его работа синхронизирована с работой лазера.

Если измерения проводят при дополнительном освещении поверхности объекта солнечным излучением, то для увеличения контраста спекл-структур на оптической оси прибора до матричной камеры дополнительно устанавливают фильтр, пропускающий излучение на длине волны лазера (см. п.4 Формулы).

Для увеличения контраста спекл-структур выбирают источник когерентного излучения с линейной поляризацией излучения (см. п.5 Формулы).

Для увеличения контраста спеклованного изображения объекта (например, поверхность удаленного объекта анизотропна) когерентный источник излучения выполняют с возможностью управления направлением поляризации линейно-поляризованного излучения (см. п.6 Формулы).

На фиг.1 представлена оптическая схема заявленного устройства, где: лазер 1, объектив 2 лазера, зеркало 3, объектив 4 телескопа, окуляр 5 телескопа, полосовой фильтр 6, светоделитель 7, цифровая фотокамера 8, окуляр 9 для визуального наведения, электронно-вычислительный блок 10, виброизолированное основание 11 и окулярный узел 12 телескопа;

стрелка ↕ - введение или выведение оптического элемента в (из) оптический(ого) тракт(а);

- оптическая ось прибора.

На фиг.2 представлена фотография прибора «Спекл-виброметр дистанционный лазерный», выполненный по заявленному изобретению, где показан оптико-электронный блок 13 (все позиции фиг.1 за исключением поз.10), азимутальная монтировка 14, виброгасящие подпятники 15, соединительный кабель 16, электронно-вычислительный блок 10 и тренога 17.

На фиг.3 представлены полученные в одном измерении зависимости амплитуды V виброскорости в вертикальном направлении (фиг.3а) и горизонтальном направлении (фиг.3б) от частоты ν.

Устройство работает следующим образом.

Устанавливают устройство на виброизолированное (в рабочем диапазоне частот) основание.

Ось телескопа выставляют вдоль нормали к поверхности объекта. Направляют лазерное излучение в область пересечения оптической оси телескопа с поверхностью измеряемого объекта. Для контроля наведения прибора на объект и наведения изображения объекта на резкость используют вводимый светоделителем окуляр для визуального наблюдения. Для последующей тонкого наведения на объект используют цифровую камеру матричного типа. На мониторе получают резкое изображение объекта путем изменения положения плоскости изображения объекта (настройка телескопа). Определяют коэффициент увеличения изображения объекта. Подходы к решению такой задачи известны. Возможно предварительное наведение на резкость с использованием рассеиваемого объектом некогерентного излучения (дневного света). Подходы к решению такой задачи известны.

Для получения спекл-картины (картины интерференции от большого количества когерентных источников со случайными фазами и амплитудами) необходимо освещать поверхность диффузно-рассеивающего объекта когерентным излучением. В качестве источника когерентного излучения используют лазер, длина когерентности которого позволяет формировать на поверхности фотоприемного устройства высококонтрастную спекл-картину (спеклованное изображение поверхности объекта). Поскольку длина волны излучения задает масштаб интерференционной картины на поверхности объекта, то необходимо, чтобы за время проведения измерения длина волны когерентного излучения была стабильна (стабильность длины волны входит в объем понятия временной когерентности).

При работе в условиях яркой освещенности некогерентным излучением для увеличения контрастности получаемой спекл-картины на оптической оси прибора до фотоприемного устройства устанавливают узкополосный фильтр, пропускающий излучение с длиной волны используемого когерентного излучения.

Объект в поле зрения камеры должен быть освещен однородно. Измеряемое перемещение спеклованного изображения объекта за период времени между экспозициями кадров ограничено полем зрения камеры и не должно, как правило, превышать одной трети поля зрения камеры в любом направлении. При этом перемещение изображения за время экспозиции должно быть много меньше характерного размера спекла.

В результате в плоскости изображения поверхности объекта формируют высококонтрастную интерференционную картину, включающую большой массив спекл-структур, отличающуюся высокими значениями градиентов интенсивности излучения и содержащую большой массив информации.

Таким образом, получают резкое изображение интенсивности освещенности поверхности объекта в виде спекл-структур в плоскости изображения объекта, где расположена камера матричного типа. Записывают серию кадров с изображениями поверхности объекта через заданные промежутки времени в электронно-вычислительный блок. Для устранения передачи паразитных вибраций по соединительным проводам от электронного блока к камере матричного типа может быть использована система беспроводной передачи информации. Подходы к решению этой задачи известны.

Использование камеры матричного типа позволило не просто устранить характерное для линейной камеры интегрирование сигнала освещенности в направлении, перпендикулярном направлению линейки фоточувствительных элементов по одному из ортогональных направлений (перпендикулярному направлению линейки фоточувствительных элементов), имеющему место при работе скоростной камеры линейного типа, но и существенно повысить исходный массив регистрируемой информации о движении спеклованного изображения в каждом из двух взаимно перпендикулярных направлений. (При использовании цифровой камеры линейного типа для получения информации о движении поверхности объекта не только в одном направлении необходимо проведение измерения с одновременной работой двух линеек фотоприемников, ориентированных во взаимно перпендикулярных направлениях).

Осуществляют последующую обработку кадров с полным или частичным использованием массива записанной в них информации для получения величин перемещений спекл-структур в двух взаимно перпендикулярных направлениях за время между серединами интервалов времени экспозиции соседних кадров с использованием одного из известных методов, например метода поиска максимума кросс-корреляционной функции соседних кадров. По полученным величинам перемещений картин спекл-структур при заданных временных интервалах между кадрами и при известном увеличении телескопа определяют в плоскости поверхности объекта средние значения его виброскорости и ее компоненты по осям, совпадающим с направлением строк и столбцов матрицы, соответственно. Эти данные позволяют также получать информацию о вибрационных параметрах для любых двух взаимно перпендикулярных направлений в плоскости поверхности объекта.

Если оптическая ось телескопа отклоняется от направления нормали к поверхности объекта, но поверхность объекта в поле зрения камеры находится в пределах глубины резкости изображения, то в этом случае прибор измеряет компоненты проекции виброскорости объекта на плоскость, перпендикулярную оптической оси телескопа.

С использованием дискретного преобразования Фурье получают частотную зависимость амплитуды виброскорости (см. Фиг.3). Затем, зная указанную зависимость, рассчитывают частотные зависимости для амплитуд виброперемещения, виброускорения и др.

Полученные результаты отображают либо в графической форме, в виде зависимости амплитуды виброскорости (виброперемещения, виброускорения) и др., от частоты, либо в виде числовых таблиц.

Пример конкретного исполнения (по п.1 Формулы).

Расстояние от прибора до поверхности объекта измеряли с использованием лазерного дальномера Leica D3 DISTO. Погрешность измерения расстояния не превышала 5 мм.

Мощность когерентного источника лазерного излучения определяли с помощью измерителя мощности лазерного излучения ИМО-2Н.

Для установки прибора на удобной для работы с ним высоте использовалась тренога LJ-1 с азимутальной монтировкой AZ3 фирмы Sky Watcher. Тренога устанавливалась на виброгасящие подпятники фирмы Meade. На монтировку, имеющую механизм для точного наведения прибора по азимутальному углу и углу места на измеряемый участок поверхности объекта, устанавливалась платформа, на которой были размещены основные элементы и узлы прибора. Для более эффективного гашения колебаний узлов прибора относительно друг друга платформа изготавливалась из виброгасящего материала.

В качестве когерентного источника излучения использовался полупроводниковый лазер 1 (модель KLM-H650-40-5, λ=0,650 мкм, мощность - 40 мВт). Излучение лазера включалось синхронно с открытием затвора ФПЗС-камеры (для уменьшения энергопотребления прибора). На длине волны излучения лазера ФПЗС-камера 10 (VSC-541-USB) имела чувствительность на уровне 0,8 от максимальной. В приборе полупроводниковый лазер 1 установлен на платформу под углом 90° к оптической оси телескопа. Лазер снабжен формирователем пучка, представляющим собой объектив 2, изменяя положение которого изменяют размер пятна облучения на поверхности вибрирующего объекта. Зеркало 3 направляло луч лазера вдоль оптической оси телескопа. Для сбора рассеянного объектом излучения лазера использован зеркально-линзовый телескоп «Астро-Рубинар-100-Б» с входной апертурой 100 мм и минимальным рабочим расстоянием до объекта 4 м. В состав телескопа входил объектив 4, окулярный узел 12 и окуляр 5. Лазер 1 вместе с объективом 2 устанавливался на юстировочном устройстве, позволяющем осуществлять точное выставление направления луча лазера в область пересечения оптической оси телескопа с поверхностью вибрирующего объекта, находящегося в поле зрения камеры 8. Поскольку измерения проводились при ярком дневном освещении, за окуляром телескопа 5 помещался (выдвигаемый) полосовой интерференционный фильтр 6 (рабочая длина волны λ=650 нм, ширина полосы пропускания Δλ=10 нм), настроенный на пропускание излучения лазера, для отсечения некогерентной дневной засветки. За фильтром 6 помещалось (выдвигаемое) зеркало 7, которое направляло излучение на окуляр 9, предназначенный для визуального наведения прибора на объект. При наблюдении в окуляр 9 осуществлялось как направление оптической оси телескопа на объект, так и наведение изображения объекта на резкость, которое производилось вращением кольца объектива 4. После этого зеркало 7 выводилось из оптического тракта.

Для более точного определения коэффициента увеличения изображения использовалась его зависимость от расстояния от прибора до объекта, которая заранее определялась экспериментально. Подходы к решению этой задачи известны.

В плоскости изображения объекта устанавливалась светочувствительная матрица цифровой ФПЗС-камеры 10 марки VSC-541-USB (размер кадра 492×288), работающая на частоте 200 кадров в секунду. Кабелем интерфейса USB 2.0 камера связана с электронно-вычислительным блоком записи, хранения, обработки и отображения информации, в качестве которого в данном приборе использовался персональный компьютер (ПК) типа ноутбук фирмы Fujitsu-Siemens. Управление камерой и обработка поступающей от нее информации осуществлялись ПК с использованием программного обеспечения. Программное обеспечение позволяло записывать последовательность поступающих от камеры кадров в виде avi-файлов в оперативной памяти ПК. После записи последовательности кадров они сохранялись на жестком диске ПК в виде фильма.

Программа обработки кадров позволяла определить (при известном коэффициенте увеличения оптической системы, найденном с использованием измеренного расстояния до поверхности объекта) перемещение объекта в интервале времени, равном периоду следования кадров, и тем самым определить среднюю скорость объекта в интервале между экспозициями соседних кадров. Определение смещения спекл-картины в пикселах производилось, например, методом поиска максимума кросс-корреляционной функции соседних кадров с применением алгоритма субпиксельной интерполяции положения максимума. График вычисленной зависимости виброскорости по вертикали и горизонтали от времени отображался на экране монитора. Для получения спектров амплитуды виброскорости (виброперемещения, виброускорения) в программе использовалось быстрое дискретное преобразование Фурье.

В таблице приведены данные измерений, характеризующие чувствительность и точность прибора, описанного в примере конкретного выполнения, в диапазоне частот 5-60 Гц на дистанции 8 метров до объекта при длительности экспозиции кадра 500 мкс. В одном измерении записывалась последовательность длиной до 7000 кадров. Рассчитанное по расстоянию до объекта значения коэффициента увеличения изображения равнялось 0,618.

Значение амплитуды виброскорости объекта устанавливалось на электродинамическом вибростенде и контролировалось с помощью образцового вибропреобразователя с относительной погрешностью определения виброскорости, равной 5% (испытания были проведены во ВНИИМ им. Д.И.Менделеева). Измерялись частота и амплитуда виброскорости колебаний объекта в вертикальном направлении.

Характерные минимальные амплитуды вибраций, зарегистрированные с использованием прибора, описанного в прототипе, составили 130 мкм на расстоянии 60-80 метров. Минимальные амплитуды виброперемещений, зарегистрированные с использованием заявленного прибора на расстоянии 15 м на частоте 35 Гц, равны 3-5 нм.

Следовательно, отличие порогов чувствительности для амплитуд вибропремещений для нашего прибора и прибора-прототипа составляет более двух порядков.

Таким образом, нами предложено устройство, способное работать в любое время суток независимо от источников естественного освещения. Оно позволяет проводить дистанционные измерения вибрационных параметров с высокой чувствительностью и точностью на большой дальности.

Предложенное устройство обладает важным преимуществом по сравнению с промышленно применяемыми приборами, поскольку позволяет регистрировать инфранизкие частоты (≥0,1 Гц).

В настоящее время рассматриваются предложения по использованию прибора в области вибродиагностики гражданских и промышленных зданий и сооружений, измерения малых амплитуд колебаний механических гироскопов.

Таблица Частота заданная, Гц Частота измеренная, Гц Амплитуда Vз виброскорости заданная, мм/с Амплитуда Vи виброскорости измеренная, м/с |Vи-Vз|/Vз, % 1 5 4.98 10,13 10,24 1,1 2 7,7 7.68 10,03 10,04 0,1 3 10 9.99 9,98 10,13 1,6 4 20 19.94 10,1 9,92 1,8 5 30 29.94 9,99 9,84 1,4 6 40 39.88 10 9,44 5,5 7 60 59.82 10,17 8,77 13

Похожие патенты RU2447410C2

название год авторы номер документа
ПРИЦЕЛ-ПРИБОР НАВЕДЕНИЯ С ЛАЗЕРНЫМ ДАЛЬНОМЕРОМ 2011
  • Литвяков Сергей Борисович
  • Тареев Анатолий Михайлович
  • Батюшков Валентин Вениаминович
  • Покрышкин Владимир Иванович
  • Синаторов Михаил Петрович
  • Шандора Вадим Викентьевич
  • Мышалов Павел Ильич
RU2464601C1
СПОСОБ И ЛИДАРНАЯ СИСТЕМА ДЛЯ ИЗМЕРЕНИЯ ТУРБУЛЕНТНОСТЕЙ АТМОСФЕРЫ, ОСУЩЕСТВЛЯЕМОГО НА БОРТУ ЛЕТАТЕЛЬНЫХ АППАРАТОВ, А ТАКЖЕ В АЭРОПОРТАХ И НА ВЕТРОВЫХ ЭЛЕКТРОСТАНЦИЯХ 2006
  • Халльдорссон Торштайнн
RU2405172C2
Флуориметрический анализатор биологических микрочипов 2016
  • Лысов Юрий Петрович
  • Барский Виктор Евгеньевич
  • Юрасов Дмитрий Александрович
  • Юрасов Роман Александрович
  • Черепанов Алексей Игоревич
  • Мамаев Дмитрий Дмитриевич
  • Егоров Егор Евгеньевич
  • Чудинов Александр Васильевич
  • Смолдовская Ольга Валерьевна
  • Рубина Алла Юрьевна
  • Заседателев Александр Сергеевич
RU2679605C2
УСТРОЙСТВО И СПОСОБ ИЗМЕРЕНИЯ КРОВЯНОГО ДАВЛЕНИЯ 2016
  • Виленский Максим Алексеевич
  • Попов Михаил Вячеславович
  • Клецов Андрей Владимирович
  • Чо Чжэгол
  • Зимняков Дмитрий Александрович
  • Ювченко Сергей Алексеевич
RU2648029C2
ЛИДАР ДИФФЕРЕНЦИАЛЬНОГО ПОГЛОЩЕНИЯ НА МОБИЛЬНОМ НОСИТЕЛЕ 2013
  • Алексеев Константин Олегович
  • Бень Алексей Викторович
  • Борейшо Алексей Анатольевич
  • Борейшо Анатолий Сергеевич
  • Васильев Дмитрий Николаевич
  • Чугреев Алексей Викторович
RU2567469C2
УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ ЗРЕНИЯ И ФУНКЦИОНАЛЬНОГО ЛЕЧЕНИЯ В ОФТАЛЬМОЛОГИИ 2005
  • Бардина Наталья Степановна
  • Гудков Александр Григорьевич
  • Кулешов Олег Анатольевич
  • Леушин Виталий Юрьевич
  • Маркин Владимир Васильевич
  • Паппэ Галина Евгеньевна
  • Систер Владимир Григорьевич
  • Цыганов Дмитрий Игоревич
RU2294131C1
УСТРОЙСТВО ДЛЯ УСТРАНЕНИЯ ВЛИЯНИЯ СПЕКЛ-МОДУЛЯЦИИ ПРИ ИЗМЕРЕНИИ АБЕРРАЦИЙ ГЛАЗА ЛАЗЕРНЫМ АБЕРРОМЕТРОМ И ЛАЗЕРНЫЙ АБЕРРОМЕТР 2009
  • Ларичев Андрей Викторович
RU2425621C2
СПОСОБ КОМПЕНСАЦИИ ФАЗОВЫХ ИСКАЖЕНИЙ ВОЛНОВОГО ФРОНТА НА ОСНОВЕ СВЕТОВОГО ПОЛЯ 2022
  • Широбоков Владислав Владимирович
  • Мальцев Георгий Николаевич
  • Закутаев Александр Александрович
  • Кошкаров Александр Сергеевич
  • Шосталь Вячеслав Юрьевич
RU2808933C1
Командирский прицельно-наблюдательный комплекс 2015
  • Микков Владимир Константинович
  • Хилькевич Лариса Анатольевна
  • Зеленин Леонид Федорович
  • Шишов Евгений Иванович
RU2613767C2
КОМБИНИРОВАННЫЙ ПРИЦЕЛ-ПРИБОР НАВЕДЕНИЯ 2008
  • Синаторов Михаил Петрович
  • Лях Андрей Валерьевич
  • Батюшков Валентин Вениаминович
  • Тареев Анатолий Михайлович
  • Дмитрущенков Олег Анатольевич
  • Савчик Виктор Иванович
RU2375665C2

Иллюстрации к изобретению RU 2 447 410 C2

Реферат патента 2012 года УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ВИБРАЦИОННЫХ ПАРАМЕТРОВ ОБЪЕКТА

Изобретение относится к области виброметрии широкого класса объектов. Техническим результатом изобретения является повышение точности измерений при простой конструкции. Устройство для дистанционного измерения вибрационных параметров объекта, преимущественно диффузно-рассеивающего, включает телескоп с размещенным в его фокальной плоскости объекта цифровым фотоприемным устройством, соединенным с электронно-вычислительным блоком записи, хранения, обработки и отображения информации, установлено на виброизолированном основании и дополнительно содержит источник когерентного излучения, установленный так, что его излучение направлено в область пересечения оптической оси телескопа с поверхностью измеряемого объекта, и размещенный на оптической оси прибора до фотоприемного устройства светоделитель, на оптической оси которого размещен окуляр для визуального наведения на объект. При этом источник излучения снабжен формирователем размера пучка, фотоприемное устройство выполнено в виде информационно связанной с электронно-вычислительным блоком матрицы фотоприемных элементов с электронным затвором, обеспечивающим одновременное экспонирование всех формирующих кадр фотоприемных элементов, а оптическая ось телескопа установлена перпендикулярно поверхности измеряемого объекта. 5 з.п. ф-лы, 3 ил., 1 табл.

Формула изобретения RU 2 447 410 C2

1. Устройство для дистанционного измерения вибрационных параметров объекта, преимущественно диффузно-рассеивающего, включающее телескоп с размещенным в его фокальной плоскости объекта цифровым фотоприемным устройством, соединенным с электронно-вычислительным блоком записи, хранения, обработки и отображения информации, отличающееся тем, что устройство установлено на виброизолированном основании и дополнительно содержит источник когерентного излучения, установленный так, что его излучение направлено в область пересечения оптической оси телескопа с поверхностью измеряемого объекта, и размещенный на оптической оси прибора до фотоприемного устройства светоделитель, на оптической оси которого размещен окуляр для визуального наведения на объект, при этом источник излучения снабжен формирователем размера пучка, фотоприемное устройство выполнено в виде информационно связанной с электронно-вычислительным блоком матрицы фотоприемных элементов с электронным затвором, обеспечивающим одновременное экспонирование всех формирующих кадр фотоприемных элементов, а оптическая ось телескопа установлена перпендикулярно поверхности измеряемого объекта.

2. Устройство по п.1, отличающееся тем, что источник когерентного излучения установлен так, что его излучение направлено вдоль оптической оси телескопа.

3. Устройство по п.1, отличающееся тем, что источник когерентного излучения выбран импульсным.

4. Устройство по п.1, отличающееся тем, что на его оптической оси до фотоприемного устройства матричной камеры дополнительно установлен фильтр, пропускающий излучение на длине волны когерентного источника излучения.

5. Устройство по п.1, отличающееся тем, что источник когерентного излучения выбран с линейной поляризацией излучения.

6. Устройство по п.5, отличающееся тем, что источник когерентного излучения выполнен с возможностью управления направлением поляризации линейно-поляризованного излучения.

Документы, цитированные в отчете о поиске Патент 2012 года RU2447410C2

ЛАЗЕРНЫЙ ИЗМЕРИТЕЛЬ АМПЛИТУДЫ УГЛОВЫХ И ЛИНЕЙНЫХ ВИБРОПЕРЕМЕЩЕНИЙ 2006
  • Гришанов Александр Владимирович
  • Гришанов Владимир Николаевич
RU2324906C2
Лазерное устройство для контроля параметров вибрации объекта 1990
  • Милинкис Борис Моисеевич
  • Гусев Александр Николаевич
SU1798627A1
Пюпитр для пишущей машины 1927
  • Васильев А.В.
SU9530A1
EP 1496343 A2, 12.01.2005
JP 10221159 A, 21.08.1998
JP 6201657 A, 22.07.1994.

RU 2 447 410 C2

Авторы

Макин Владимир Сергеевич

Пестов Юрий Иванович

Глущенко Лариса Александровна

Даты

2012-04-10Публикация

2010-05-21Подача