ГАЗОНАПОЛНЕННАЯ НЕЙТРОННАЯ ТРУБКА Российский патент 2012 года по МПК H05H3/06 

Описание патента на изобретение RU2451433C1

Изобретение относится к отпаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для проведения неразрушающего элементного анализа вещества и проведения исследований нейтронно-радиационными методами, в т.ч. для проведения геофизических исследований нефтегазовых скважин.

Известна нейтронная трубка, которая представляет собой миниатюрный линейный ускоритель ионов, с одной стороны которого расположен ионный источник, а с другой - мишень. Генерация нейтронов происходит в результате реакции (d, n), при бомбардировке ускоренными ионами мишени. Получаемые при этом нейтроны имеют энергию 2,5 МэВ для реакции D(d, n)Не3 и 14 МэВ для реакции T(d, n)Не4. Нейтронная трубка имеет три основных узла: ионный источник, ионнооптическая система, мишенный узел. В качестве ионного источника в трубке применен ионный источник типа Пеннинга с холодным катодом. Рабочий газ (дейтерий либо смесь дейтерия и трития) содержится в натекателе (генераторе рабочего газа). На анод ионного источника подают модуляционное напряжение с частотой следования f от 400 Гц до 10 кГц с длительностью от 100 до 20 мкс соответственно. Сборник материалов межотраслевой научно-технической конференции «Портативные генераторы нейтронов и технологии на их основе». М.: ВНИИА, 2003. С.12.

Известна газонаполненная нейтронная трубка, содержащая герметичную оболочку, источник ионов типа Пеннинга, источник газа (натекатель), ускоряющий электрод, мишень, высоковольтный изолятор, газопоглотитель. Патент США US 2009/0108192 A1.

Известна газонаполненная нейтронная трубка с ионным источником Пеннинга с термокатодом, выполненная в виде герметичной металлостеклянной колбы. В колбе расположены мишень, ионнооптическая система, источник ионов, генератор рабочего газа и газопоглотитель. Газопоглотитель установлен на одном из вводов ножки газонаполненной нейтронной трубки, содержит встроенный термоподогреватель и выполнен в виде втулки из спеченного мелкозернистого порошка титана массой от 100 до 350 мг. Такое выполнение газонаполненной нейтронной трубки позволяет повысить электрическую прочность ионнооптической системы трубки с ионным источником Пеннинга и горячим катодом, а также увеличить нейтронный поток и ресурс. (Патент Российской Федерации №2372755, МПК Н05Н 3/06, 2008 г. - прототип.)

Все вышеперечисленные нейтронные трубки страдают общим недостатком - в процессе работы вследствие расфокусировки пучка ионов, извлекаемых из источника ионов, часть пучка попадает на внутренние поверхности фокусирующего и ускоряющего электродов. Помимо увеличения тока трубки за счет образования вторичных электронов, это приводит к распылению электродов и, соответственно, к запылению внутренней стенки герметичной колбы напротив фокусирующего и ускоряющего электродов. В результате запыления образуется проводящий слой и, как следствие, электрический пробой по внутренней поверхности герметизирующей колбы.

Процесс образования области запыления хорошо виден на Фото 1 - фотографии нейтронной трубки на начальной стадии запыления (затемнение внутренней поверхности прозрачной стеклянной колбы).

На Фото 2 показаны крупным планом следы от электрических пробоев и утечек по запыленной области. При таких пробоях и электрических утечках нейтронная трубка полностью приходит в негодность.

Настоящее изобретение предназначено для снижения эффекта запыления внутренней поверхности герметичной колбы.

Техническим результатом изобретения является повышение надежности и ресурса работы нейтронной трубки.

Технический результат достигается тем, что газонаполненная нейтронная трубка с источником Пеннинга, выполненная в виде герметичной колбы, в которой расположены мишень, ионнооптическая система, источник ионов и генератор рабочего газа, отличается тем, что на внутренней поверхности герметичной колбы в зоне электродов ионнооптической системы нанесена насечка, увеличивающая площадь внутренней поверхности герметичной колбы. Насечка может быть выполнена синусоидальной формы, например с амплитудой и периодом 1 мм.

Область запыления внутренней поверхности герметичной колбы расположена между фокусирующим и ускоряющим электродами ионнооптической системы. Очевидно, что плотность запыления внутренней поверхности при прочих равных условиях обратно пропорциональна площади запыления. В свою очередь электрическое сопротивление и электрическая прочность изоляции обратно пропорциональны плотности запыления. Таким образом, увеличение внутренней поверхности герметизирующего баллона уменьшает плотность его запыления и, соответственно, увеличивает электрическое сопротивление и электрическую прочность изоляции.

При выполнении насечки синусоидальной формы с амплитудой и периодом 1 мм на длине 20 мм площадь осаждения материала электродов увеличивается на 40%, что эквивалентно снижению плотности напыленного слоя на 40% и, соответственно, пропорциональному увеличению срока запыления внутренней поверхности до образования электрического пробоя.

Сущность описываемого устройства поясняется чертежом, где на фиг.1 схематично представлен поперечный разрез нейтронной трубки.

Газонаполненная нейтронная трубка с источником Пеннинга выполнена в виде герметичной колбы 1 (например, стеклянной или металлокерамической) с металлокерамической ножкой 2. Внутри колбы 1 размещены мишень 3, иоонооптическая система 4, источник 5 ионов, генератор 6 рабочего газа, катод 7 и антикатод 8 с отверстием для выхода ионов в ионнооптическую систему, анод 9. Устройство содержит магнит 10, фокусирующий электрод 11 и ускоряющий электрод 12 ионнооптической системы. На внутренней поверхности герметичной колбы 1 в зоне электродов 11 и 12 ионнооптической системы нанесена насечка 13, увеличивающая площадь внутренней поверхности герметичной колбы.

Насечка (позиция 13) на внутренней поверхности герметизирующей колбы 1 в области колбы, более всего подверженной запылению, увеличивает площадь, снижая, тем самым, плотность напыленного слоя. Благодаря этому электрическая прочность трубки дольше сохраняется и, как следствие, увеличивается ресурс и надежность работы нейтронной трубки. Изготовленная по такой технологии нейтронная трубка с синусоидальной насечкой глубиной и шагом 1 мм при испытаниях на ресурс отработала в 1,5 раз дольше нейтронной трубки, изготовленной без насечки.

Похожие патенты RU2451433C1

название год авторы номер документа
ГАЗОНАПОЛНЕННАЯ НЕЙТРОННАЯ ТРУБКА С ИСТОЧНИКОМ ПЕННИНГА 2008
  • Боголюбов Евгений Петрович
  • Васин Владимир Сергеевич
RU2372755C1
УНИВЕРСАЛЬНАЯ НЕЙТРОННАЯ ТРУБКА С ЭЛЕКТРОТЕРМИЧЕСКИМИ ИНЖЕКТОРАМИ РАБОЧЕГО ГАЗА 2015
  • Карпов Дмитрий Алексеевич
  • Литуновский Владимир Николаевич
RU2601961C1
СПОСОБ ИЗГОТОВЛЕНИЯ НЕЙТРОННОЙ ТРУБКИ 2013
  • Садилкин Александр Геннадьевич
  • Марков Виктор Григорьевич
  • Прохорович Дмитрий Евгеньевич
  • Губарев Александр Владимирович
  • Щитов Николай Николаевич
RU2543053C1
ГЕНЕРАТОР НЕЙТРОНОВ В ГЕРМЕТИЧНОЙ ТРУБКЕ, СОДЕРЖАЩИЙ ВСТРОЕННЫЙ ДЕТЕКТОР СВЯЗАННЫХ АЛЬФА-ЧАСТИЦ ДЛЯ СКВАЖИННОГО КАРОТАЖА 1999
  • Чен Женпень
  • Ксю Сида
  • Жу Шеньянь
  • Жао Йиньлан
  • День Йинькань
  • Жу Вейбин
  • Сун Ейинь
  • Ку Ксяньчай
  • Ли Хуажань
RU2199136C2
ЗАПАЯННАЯ НЕЙТРОННАЯ ТРУБКА 2014
  • Сыромуков Сергей Владимирович
RU2583000C1
СПОСОБ ФОРМИРОВАНИЯ НЕЙТРОННОГО ПОТОКА ГАЗОНАПОЛНЕННОЙ НЕЙТРОННОЙ ТРУБКИ 2008
  • Боголюбов Евгений Петрович
  • Васин Владимир Сергеевич
  • Якубов Рустам Халимович
RU2366013C1
ГАЗОНАПОЛНЕННАЯ НЕЙТРОННАЯ ТРУБКА 2008
  • Боголюбов Евгений Петрович
  • Васин Владимир Сергеевич
  • Якубов Рустам Халимович
RU2366030C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОНАПОЛНЕННОЙ НЕЙТРОННОЙ ТРУБКИ 2006
  • Боголюбов Евгений Петрович
  • Васин Владимир Сергеевич
  • Губарев Александр Владимирович
  • Якубов Рустам Халимович
RU2327239C1
ГЕНЕРАТОР МЕЧЕНЫХ НЕЙТРОНОВ 2011
  • Хасаев Тимур Октаевич
  • Пресняков Юрий Константинович
RU2467317C1
Нейтронная трубка 1978
  • Бессарабский Ю.Г.
  • Воробьев С.П.
  • Овсянников С.Б.
  • Прокопьев В.М.
  • Суховеев С.П.
SU711916A1

Иллюстрации к изобретению RU 2 451 433 C1

Реферат патента 2012 года ГАЗОНАПОЛНЕННАЯ НЕЙТРОННАЯ ТРУБКА

Изобретение относится к отпаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для проведения неразрушающего элементного анализа вещества и проведения исследований нейтронно-радиационными методами, в т.ч. для проведения геофизических исследований нефтегазовых скважин. Газонаполненная нейтронная трубка с источником Пеннинга выполнена в виде герметичной колбы. В колбе расположены мишень, ионнооптическая система, источник ионов и генератор рабочего газа. На внутренней поверхности герметичной колбы в зоне электродов ионнооптической системы нанесена насечка, увеличивающая площадь внутренней поверхности герметичной колбы. Насечка может быть выполнена синусоидальной формы, с амплитудой и периодом 1 мм. Изобретение позволяет повысить надежность и ресурс работы нейтронной трубки. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 451 433 C1

1. Газонаполненная нейтронная трубка с источником Пеннинга, выполненная в виде герметичной колбы, в которой расположены мишень, ионно-оптическая система, источник ионов и генератор рабочего газа, отличающаяся тем, что на внутренней поверхности герметичной колбы в зоне электродов ионно-оптической системы нанесена насечка, увеличивающая площадь внутренней поверхности герметичной колбы.

2. Газонаполненная нейтронная трубка по п.1, отличающаяся тем, что насечка выполнена синусоидальной формы.

3. Газонаполненная нейтронная трубка по п.2, отличающаяся тем, что насечка выполнена синусоидальной формы с амплитудой и периодом 1 мм.

Документы, цитированные в отчете о поиске Патент 2012 года RU2451433C1

ГАЗОНАПОЛНЕННАЯ НЕЙТРОННАЯ ТРУБКА С ИСТОЧНИКОМ ПЕННИНГА 2008
  • Боголюбов Евгений Петрович
  • Васин Владимир Сергеевич
RU2372755C1
Дифференциальный барометр-высотомер 1948
  • Рябченко В.И.
SU79229A1
ЗАПАЯННАЯ НЕЙТРОННАЯ ТРУБКА 2008
  • Боголюбов Евгений Петрович
  • Сыромуков Сергей Владимирович
  • Якубов Рустам Халимович
RU2362278C1
JP 6342699 А, 13.12.1994.

RU 2 451 433 C1

Авторы

Бутолин Сергей Львович

Черменский Владимир Германович

Хасаев Тимур Октаевич

Даты

2012-05-20Публикация

2011-05-16Подача