ГАЗОНАПОЛНЕННАЯ НЕЙТРОННАЯ ТРУБКА С ИСТОЧНИКОМ ПЕННИНГА Российский патент 2009 года по МПК H05H3/06 

Описание патента на изобретение RU2372755C1

Изобретение относится к ускорительным трубкам для получения нейтронов при проведении неразрушающего элементного анализа вещества и проведения физических исследований нейтронно-радиационными методами.

Известны нейтронные трубки с ионным источником Пеннинга с термокатодом, выполненные в виде герметичной колбы, состоящей из металлостеклянной оболочки и металлостеклянной или металлокерамической ножки, в которой расположены мишень, ионнооптическая система, источник ионов и генератор рабочего газа, одновременно служащий и газопоглотителем остаточных газов. P.O.Howkins, Rev. Sci. Instr., 31, 3, 241 (1960). Academia R.P.R., Bucharest, Institutul de Fisica Atomics, 1967, 46p, Dep.

Известен ионный источник Пеннинга с термокатодом, содержащий катод с вольфрамовой спиралью, разогреваемой при работе нейтронной трубки до температуры 2100°С, антикатод с отверстием для выхода ионов в ионнооптическую систему трубки, анод, генератор газа и магнит. На анод ионного источника Пеннинга с термокатодом подают постоянное или импульсное напряжение. P.O.Houkins, Rev. Sci. Instr., 31, 3, 241 (1960).

При работе трубок с ионным источником Пеннинга с термокатодом из-за выделения катодом дополнительного тепла, потребляемая катодом мощность 10-15 Вт, протекает процесс выделения остаточных газов (азота, кислорода, окислов углерода и азота, карбидов) из деталей нейтронной трубки. За счет разбавления рабочего газа остаточными газами снижается электрическая прочность трубки, уменьшается нейтронный поток за счет набивки мишени остаточными газами, уменьшается ресурс работы.

Известна газонаполненная нейтронная трубка. Нейтронная трубка представляет собой миниатюрный линейный ускоритель ионов, с одной стороны которого расположен ионный источник, а с другой - мишень. Генерация нейтронов происходит в результате реакции (d,n), при бомбардировке ускоренными ионами мишени. Получаемые при этом нейтроны имеют энергию 2,5 МэВ для реакции D(d, n)He3 и 14 МэВ для реакции T(d, n)He4. Нейтронная трубка имеет три основных узла: ионный источник, ионнооптическая система, мишенный узел. В качестве ионного источника в трубке применен ионный источник типа Пеннинга с холодным катодом. Рабочий газ (дейтерий, либо смесь дейтерия и трития) содержится в натекателе. На анод ионного источника подают модуляционное напряжение с частотой следования f от 400 Гц до 10 кГц с длительностью от 100 до 20 мкс соответственно. Сборник материалов межотраслевой научно-технической конференции «Портативные генераторы нейтронов и технологии на их основе». М.: ВНИИА, 2003. С.12.

Известен генератор нейтронов в герметичной трубке, содержащий герметичную оболочку, источник ионов Пеннинга, источник газа (натекатель), ускоряющий электрод и мишень. Источник ионов Пеннинга и ускоряющий электрод установлены в газонепроницаемой оболочке, источник газа закреплен в камере. Блок вывода и фокусировки ионного пучка расположен между источником ионов Пеннинга и ускоряющим электродом. Генератор содержит газопоглотитель, закрепленный в камере для источника ионов. Патент Российской Федерации №2199136, МПК: H05H 3/06, 2003 г. Прототип.

Нейтронные трубки с термокатодом имеют невысокую электрическую прочность при работе при ускоряющих напряжениях свыше 100 кВ и ограниченные возможности для получения повышенных нейтронных потоков более 109 н/c.

Данное изобретение исключает указанные недостатки.

Техническим результатом изобретения является: повышение электрической прочности ионнооптической системы трубки с ионным источником Пеннинга с горячим катодом, увеличение нейтронного потока и ресурса работы.

Технический результат достигается тем, что в газонаполненной нейтронной трубке с ионным источником Пеннинга с термокатодом, выполненной в виде герметичной металлостеклянной колбы, в которой расположены мишень, ионнооптическая система, источник ионов, генератор рабочего газа и газопоглотитель, газопоглотитель выполнен в виде втулки из спеченного мелкозернистого порошка титана массой от 100 до 350 мг и содержит встроенный термоподогреватель.

Сущность изобретения поясняется чертежом, на котором схематично представлен поперечный разрез устройства, где: 1 - металлостеклянная оболочка, 2 - металлокерамическая ножка, 3 - мишень, 4 - ионнооптическая система, 5 - источник ионов, 6 - генератор газа (натекатель), 7 - катод, 8 - антикатод с отверстием для выхода ионов в ионнооптическую систему, 9 - анод, 10 - магнит, 11 - термокатод с вольфрамовой спиралью, 12 - термогазопоглотитель.

Устройство работает следующим образом.

Через термокатод с вольфрамовой спиралью 11 ионного источника 5 пропускают электрический ток величиной 2А при напряжении порядка 6 В. Термокатод с вольфрамовой спиралью 11 излучает термоэлектроны и обеспечивает при подаче на анод 9 напряжения 200 В электронный ток величиной около 20 мА. Одновременно с включением термокатода с вольфрамовой спиралью 11 на термогазопоглотитель 12 подают напряжение величиной порядка 7 В (ток, протекающий через термогазопоглотитель 12, составляет величину порядка 0,45А), что обеспечивает температуру термогазопоглотителя 12 в виде титановой втулки порядка 700°С.

На анод 9 источника ионов 5 подают модуляционные импульсы амплитудой 200 В, длительностью 20 мкс и частотой следования импульсов 10 кГц (этот режим наиболее благоприятен при проведении радиационного анализа вещества). Магнитное поле, образуемое магнитом 10 с магнитной индукцией 40-60 мТл, обеспечивает в рабочей области источника ионов 5 осцилляцию (по спиралеобразным траекториям) от антикатода 8 с отверстием для выхода ионов в ионнооптическую систему к катоду 7 электронов, рождаемых термокатодом с вольфрамовой спиралью 11. При пропускании через генератор газа (натекатель) 6 тока порядка 0,2-0,3 А из генератора выделяются тритий и дейтерий, осциллирующие электроны, взаимодействуя с рабочим газом, обеспечивают в источнике ионов 5 возникновение ионов, попадающих в выходное отверстие антикатода 8. Благодаря наличию обратной связи между возникающим током через источник ионов 5, имеющим амплитуду в импульсе порядка 20 мА, и током через генератор газа, рабочее давление в трубке стабилизируется на уровне порядка 5.10-2 мм рт.ст.

Термогазопоглотитель 12 в нагретом состоянии обеспечивает поглощение при температуре 700°С выделяемых при работе трубки остаточных газов, таких как кислород, азот, углекислый газ, окислы азота. Рабочие газы (дейтерий и тритий) при такой температуре термогазопоглотителем 12 в виде втулки из спеченного мелкозернистого порошка титана массой от 100 до 350 мг не поглощаются.

Газонаполненная нейтронная трубка с источником Пеннинга способна при напряжении 120-125 кВ и среднем токе порядка 350 мкА генерировать нейтронные потоки выше 2.109 н/c и обеспечить среднюю наработку порядка 200 часов. Сорбционная емкость термогазопоглотителя 12 зависит от его массы. Наиболее приемлемой для газонаполненной нейтронной трубки, рассчитанной на обеспечение нейтронного потока порядка 2.109 н/с при выделяемой мощности порядка 50 Вт, является масса порядка 100-350 мг.

Температуру термогазопоглотителя 12 в процессе работы трубки поддерживают на уровне 700°С. При такой температуре рабочее тело термогазопоглотителя 12 - втулки из спеченного мелкозернистого порошка титана массой в пределах 100-350 мг обеспечивает поглощение всех остаточных газов, находящихся в трубке. Термогазопоглотитель 12 наиболее удобно установить на одном из вводов ножки газонаполненной нейтронной трубки.

Выделение и поглощение изотопов водорода (50% T2 и 50% D2) происходит через генератор газа (натекатель) 6 при температуре около 300°С. Это обеспечивает нахождение в объеме работающей газонаполненной нейтронной трубки при давлении около 5.10-2 мм рт.ст. очищенных от примесей рабочих газов (дейтерия и трития).

Устройство обеспечивает электрическую прочность ионно-оптической системы 4 трубки более 140 кВ, генерирует нейтронный поток на уровне 2.109 н/с и сохраняет его при длительной работе (более 200 часов).

Рабочие параметры предлагаемой нейтронной трубки (в сравнении с трубкой, не имеющей термогазопоглотителя 12) представлены в таблице.

Таблица №№ пп Параметр Трубка с термокатодом и термогазопоглотителем (предлагаемый вариант) Трубка с термокатодом (без термогазопоглотителя) 1 Ускоряющее напряжение (кВ) 120-130 100 2 Ток, протекающий через трубку (мкА) 300-400 180-200 3 Нейтронный поток (109 н/с) ~2 ~0,7 4 Ресурс ~200 ~150

Похожие патенты RU2372755C1

название год авторы номер документа
ГАЗОНАПОЛНЕННАЯ НЕЙТРОННАЯ ТРУБКА 2011
  • Бутолин Сергей Львович
  • Черменский Владимир Германович
  • Хасаев Тимур Октаевич
RU2451433C1
УНИВЕРСАЛЬНАЯ НЕЙТРОННАЯ ТРУБКА С ЭЛЕКТРОТЕРМИЧЕСКИМИ ИНЖЕКТОРАМИ РАБОЧЕГО ГАЗА 2015
  • Карпов Дмитрий Алексеевич
  • Литуновский Владимир Николаевич
RU2601961C1
ГАЗОНАПОЛНЕННАЯ НЕЙТРОННАЯ ТРУБКА 2008
  • Боголюбов Евгений Петрович
  • Васин Владимир Сергеевич
  • Якубов Рустам Халимович
RU2366030C1
СПОСОБ ФОРМИРОВАНИЯ НЕЙТРОННОГО ПОТОКА ГАЗОНАПОЛНЕННОЙ НЕЙТРОННОЙ ТРУБКИ 2008
  • Боголюбов Евгений Петрович
  • Васин Владимир Сергеевич
  • Якубов Рустам Халимович
RU2366013C1
Импульсный генератор нейтронов 2022
  • Носиков Николай Сергеевич
  • Сыромуков Сергей Владимирович
  • Юрков Дмитрий Игоревич
RU2784836C1
ГЕНЕРАТОР НЕЙТРОНОВ В ГЕРМЕТИЧНОЙ ТРУБКЕ, СОДЕРЖАЩИЙ ВСТРОЕННЫЙ ДЕТЕКТОР СВЯЗАННЫХ АЛЬФА-ЧАСТИЦ ДЛЯ СКВАЖИННОГО КАРОТАЖА 1999
  • Чен Женпень
  • Ксю Сида
  • Жу Шеньянь
  • Жао Йиньлан
  • День Йинькань
  • Жу Вейбин
  • Сун Ейинь
  • Ку Ксяньчай
  • Ли Хуажань
RU2199136C2
СПОСОБ СЕПАРАЦИИ ОДНОАТОМНЫХ ИОНОВ ВОДОРОДА В ИОННЫХ ИСТОЧНИКАХ И ИМПУЛЬСНАЯ НЕЙТРОНОГЕНЕРИРУЮЩАЯ ТРУБКА С СЕПАРАЦИЕЙ ОДНОАТОМНЫХ ИОНОВ (ВАРИАНТЫ) 2011
  • Полосаткин Сергей Викторович
  • Гришняев Евгений Сергеевич
  • Бурдаков Александр Владимирович
  • Шульженко Григорий Иванович
RU2479878C2
СПОСОБ ИЗГОТОВЛЕНИЯ НЕЙТРОННОЙ ТРУБКИ 2013
  • Садилкин Александр Геннадьевич
  • Марков Виктор Григорьевич
  • Прохорович Дмитрий Евгеньевич
  • Губарев Александр Владимирович
  • Щитов Николай Николаевич
RU2543053C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОНАПОЛНЕННОЙ НЕЙТРОННОЙ ТРУБКИ 2006
  • Боголюбов Евгений Петрович
  • Васин Владимир Сергеевич
  • Губарев Александр Владимирович
  • Якубов Рустам Халимович
RU2327239C1
УСТРОЙСТВО ДЛЯ ИОННО-ПЛАЗМЕННОГО ТРАВЛЕНИЯ И НАНЕСЕНИЯ ТОНКИХ ПЛЕНОК 2013
  • Исаев Алексей Алексеевич
RU2540318C2

Реферат патента 2009 года ГАЗОНАПОЛНЕННАЯ НЕЙТРОННАЯ ТРУБКА С ИСТОЧНИКОМ ПЕННИНГА

Изобретение относится к ускорительным трубкам для получения нейтронов при проведении неразрушающего элементного анализа вещества и проведения физических исследований нейтронно-радиационными методами. Газонаполненная нейтронная трубка с ионным источником Пеннинга с термокатодом выполнена в виде герметичной металлостеклянной колбы. В колбе расположены мишень, ионнооптическая система, источник ионов, генератор рабочего газа и газопоглотитель. Газопоглотитель установлен на одном из вводов ножки газонаполненной нейтронной трубки, содержит встроенный термоподогреватель и выполнен в виде втулки из спеченного мелкозернистого порошка титана массой от 100 до 350 мг. Изобретение позволяет повысить электрическую прочность ионнооптической системы трубки с ионным источником Пеннинга и горячим катодом, а также увеличить нейтронный поток и ресурс. 1 табл., 1 ил.

Формула изобретения RU 2 372 755 C1

Газонаполненная нейтронная трубка с ионным источником Пеннинга с термокатодом, выполненная в виде герметичной металлостеклянной колбы, в которой расположены мишень, ионно-оптическая система, источник ионов, генератор рабочего газа и газопоглотитель, отличающаяся тем, что газопоглотитель установлен на одном из вводов ножки газонаполненной нейтронной трубки, содержит встроенный термоподогреватель и выполнен в виде втулки из спеченного мелкозернистого порошка титана массой от 100 до 350 мг.

Документы, цитированные в отчете о поиске Патент 2009 года RU2372755C1

ГЕНЕРАТОР НЕЙТРОНОВ В ГЕРМЕТИЧНОЙ ТРУБКЕ, СОДЕРЖАЩИЙ ВСТРОЕННЫЙ ДЕТЕКТОР СВЯЗАННЫХ АЛЬФА-ЧАСТИЦ ДЛЯ СКВАЖИННОГО КАРОТАЖА 1999
  • Чен Женпень
  • Ксю Сида
  • Жу Шеньянь
  • Жао Йиньлан
  • День Йинькань
  • Жу Вейбин
  • Сун Ейинь
  • Ку Ксяньчай
  • Ли Хуажань
RU2199136C2
УСКОРИТЕЛЬ ЗАРЯЖЕННЫХ ЧАСТИЦ 1986
  • Мартынов В.Ф.
  • Переводчиков В.И.
  • Завьялов М.А.
  • Шапиро А.Л.
  • Лисин В.Н.
  • Неганова Л.А.
SU1400467A1
RU 94017284 A1, 27.01.1996
СПОСОБ ПРОХОДКИ СКВАЖИН С ОТБОРОМ ПРОБ ГОРНЫХ ПОРОД 1997
  • Плугин А.И.
  • Нальгиев М.М.
  • Нальгиев М.М.
  • Степаненко А.И.
  • Стекольщиков М.В.
RU2148699C1
Устройство Вовк А.М.для вскрытия и изучения кишечника пчел 1984
  • Вовк Александр Михайлович
SU1351582A1

RU 2 372 755 C1

Авторы

Боголюбов Евгений Петрович

Васин Владимир Сергеевич

Даты

2009-11-10Публикация

2008-02-07Подача