ДИФФУЗОР ГРОМКОГОВОРИТЕЛЯ ИЗ КОМПОЗИЦИОННОГО МАТЕРИАЛА Российский патент 2012 года по МПК H04R7/00 H04R31/00 

Описание патента на изобретение RU2453071C1

Изобретение относится к области диффузоров громкоговорителей с катушкой подвижного типа, в частности к диффузорам из матрицы из пористого никеля со степенью пористости от 90 до 98%, к задней поверхности которой приклеена алюминиевая фольга при помощи смеси, в состав которой входят эпоксидная смола, отвердитель и упрочняющий наполнитель в виде комбинации порошка размером 1-1000 нм материала с модулем упругости более 2,46 ГПа в количестве от 0 до 50 об.% и углеродных нанотрубок в количестве от 0,01 до 10 об.%. Может применяться для изготовления громкоговорителей высококачественных акустических систем.

В производстве диффузоров громкоговорителей требуются материалы, обладающие высокой прочностью, жесткостью (высоким значением модуля упругости) и высоким значением коэффициента демпфирования акустических волн. Электромеханическая модель диффузора громкоговорителя предполагает наличие резонанса амплитудно-частотной характеристики на частоте, значение которой обратно пропорционально его площади, прямо пропорционально толщине и скорости звука в материале, из которого изготовлен диффузор. Добротность резонанса обратно пропорционально коэффициенту демпфирования. Наличие указанного резонанса диффузора ограничивает область рабочих частот громкоговорителя, в котором уровень коэффициента нелинейных искажений имеет приемлемо низкий уровень. С учетом этого, развитие технологии материалов для диффузоров высококачественных громкоговорителей с низким уровнем искажений осуществляется в направлении максимизации модуля упругости Е при минимальной плотности и максимально достижимом коэффициенте демпфирования.

За счет повышения параметров модуля упругости материала диффузора и коэффициента его демпфирования достигается расширение рабочей полосы частот и снижение коэффициента нелинейных искажений громкоговорителя. Одним из способов достижения оптимального сочетания указанных параметров является изготовление диффузора в виде слоистой структуры, в которой слои материала с высокой жесткостью и прочностью примыкают к слоям с высоким коэффициентом демпфирования. Одним из наиболее подходящих материалов для диффузоров громкоговорителей являются композиционные материалы с использованием металлической матрицы из пористого металла и эпоксидного связующего.

Известно устройство-диффузор на основе заготовки из пористого никеля в форме боковой поверхности усеченного конуса в соответствии с патентом США №4129195. Заготовки получаются напылением никелевого сплава на специальные поролоновые формы, которые помещались в высокотемпературную печь, где никель вспенивается до строго определенной структуры, а поролон при этом выгорает. На никелевую заготовку толщиной порядка 1,7 мм, пористостью до 98% и размером пор от 0,15 до 0,4 мм с обратной стороны при помощи эпоксидного полимера наклеивается алюминиевая фольга толщиной 20-30 микрон. При этом одновременно обеспечивается акустическая непрозрачность диффузора и повышенная жесткость его слоистой структуры. Значение коэффициента демпфирования слоистой структуры диффузора определяется коэффициентом демпфирования пористого никеля с незаполненными порами, для которого указанный коэффициент составляет 0,02-0,03, что в 20-30 раз выше данного параметра большинства металлов. Жесткость композиционного материала диффузора составила 75 кг/мм2.

Недостатком этого способа является невозможность получения диффузора с жесткостью, которая превышала бы жесткость диффузоров из композиционных материалов с использованием углеродных волокон, а также его недостаточная прочность. При подаче на вход громкоговорителя с диффузором данного типа возможно появление механических повреждений диффузора в виде трещин.

Технической задачей настоящего изобретения является создание диффузора из композиционного материала с матрицей из пористого никеля с повышенными значениями прочности и жесткости.

Предлагаемый диффузор громкоговорителя из композиционного материала включает матрицу из пористого никеля со степенью пористости от 90 до 98% с наклеенной на ее заднюю поверхностью алюминиевой фольгой при помощи клеевого состава на основе эпоксидной смолы и отвердителя, отличающийся тем, что в эпоксидную смолу дополнительно вводят упрочняющий наполнитель в виде смеси порошка частиц размером 1-1000 нм материала с модулем упругости более 2,46 ГПа содержанием до 50 об.% и углеродных нанотрубок в количестве от 0,01 до 10 об.%.

К получению целевого продукта с требуемыми параметрами приводит использование сочетания дисперсного и волоконного упрочнителей и соответственно двух механизмов повышения прочности и жесткости.

Выбор значений модуля упругости материала дисперсного упрочнителя на уровне более 2,46 ГПа в предлагаемом устройстве объясняется тем, что данный параметр должен превышать модуль упругости полимеризованной эпоксидной смолы, и чем больше их разность, тем выше модуль упругости композиционного материала в целом. Данное условие обеспечивается при использовании нанодисперсного порошка оксида алюминия Аl2О3. Примером использования данного материала в слоистом композиционном материале может служить патент RU 2381904, в котором использовались волокна оксида алюминия с модулем упругости 110 ГПа. Различные способы производства нанопорошков данного материала описаны в патенте RU 2383638.

Физическое обоснование предлагаемого технического решения основывается на том, что обладая высокими значениями модуля упругости и плотности, оксид алюминия способствует увеличению этих параметров металлокомпозита в целом, а следовательно, и прочности диффузора. В случае если количество упомянутого выше оксида больше 50%, то дальнейшего повышения предела прочности не происходит, наблюдается существенное увеличение вязкости смеси, массы диффузора и снижение прочности клеевого контакта с алюминиевой фольгой. Если размеры частиц оксида меньше 1 нм, то весьма сложно добиться их равномерного распределения по объему эпоксидного связующего в объеме пор никеля, а если больше 1000 нм, то резко уменьшается их количество и понижается однородность микроструктуры материала, а это в свою очередь приводит к снижению прочности и эксплуатационных характеристик материала диффузора.

Вторым механизмом повышения прочности и жесткости диффузора является применение УНТ. Повышение прочностных и упругих свойств полимеризованной эпоксидной смолы при ее модифицировании УНТ было показано в значительном количестве научных работ последних лет.

В таблице 1 приведены результаты испытаний механических свойств стандартной смолы и эпоксидных смол, усиленных УНТ.

Таблица 1 Модуль упругости, ГПа Прочность, МПа Стандартная эпоксидная смола 2,46 93,5 0,1% УНТ 2,54 109 0,2% УНТ 2,60 115 0,3% УНТ 2,65 121 0,4% УНТ 2,75 113

Клеевой состав, помимо эпоксидной смолы и отвердителя, может содержать модифицирующую добавку. В качестве одного из возможных примеров компонентов такого состава можно привести следующий.

Пример

Эпоксидная диановая кислота с молекулярной массой 390-430 и массовой долей эпоксидных групп 20-22,5%,

Ангидрид малеиновой кислоты в качестве отвердителя,

Олигоэфиракрилат с молекулярной массой 337-742 в качестве модифицирующей добавки.

Предлагаемый клеевый состав готовят следующим образом. Вначале осуществляется подготовка УНТ и получение двухкомпонентной смеси с нанодисперсным порошком оксида алюминия. В эпоксидную смолу вводят модифицирующую добавку олигоэфиракрилат марки МГФ-9, перемешивают и нагревают до температуры 40-80°С. В эту смесь добавляют предварительно прогретую при температуре 40-80°С смесь оксида алюминия и УНТ и перемешивают для более равномерного распределения УНТ в растворе при помощи ультразвука в течение интервала времени от 30 мин до 48 ч. Затем смесь смолы, олигоэфиракрилата МГФ-9 и наполнителя вакуумируют при остаточном давлении не более 30 мм рт.ст. и температуре от 100 до 120°С в течение 20 мин и после этого смешивают с предварительно расплавленным ангидридом малеиновой кислоты, перемешивают и вновь вакуумируют в течение 5-10 мин. В полученную смесь, разогретую до температуры 85°С, добавляют катализатор диметиланилин и снова перемешивают ультразвуком и вакуумируют при остаточном давлении не более 30 мм рт.ст. в течение 2-3 мин. Отверждение клеевого состава производят при температуре 70-75°С избыточным давлением 0,5-0,55 МПа в течение 16 ч.

Поскольку геометрия диффузора исключает возможность прямого измерения его механических параметров, были изготовлены эталонные образцы компаунда с уровнями содержания наполнителя в эпоксидной смеси 0% (прототип) и 15% (14,5 оксид алюминия и 0,5% УНТ) в соответствии с предложенным техническим решением. По результатам измерений скорости звука акустических волн в эталонных образцах было установлено наличие косвенного положительного эффекта повышения модуля упругости материала диффузора с 75 кг/мм2 до 83 кг/мм2, т.е на 10%. Полученные результаты измерений подтверждаются результатами измерений амплитудно-частотной характеристики громкоговорителей с различными диффузорами, которые показывают расширение частотного диапазона громкоговорителя более чем на 8% за счет применения добавок оксида алюминия.

При проведении патентных исследований не обнаружены решения, идентичные заявленному, а следовательно, заявленное изобретение соответствует критерию «новизна». Сущность заявленного изобретения не следует явным образом из известных технических решений, а следовательно, заявленное изобретение соответствует критерию «изобретательский уровень».

Считаем, что сведений, изложенных в материалах заявки, достаточно для практического осуществления изобретения.

Похожие патенты RU2453071C1

название год авторы номер документа
Способ получения полимерных композиционных материалов 2016
  • Красновский Александр Николаевич
  • Кузнецов Андрей Геннадьевич
  • Егоров Сергей Александрович
  • Кищук Петр Сергеевич
RU2637227C1
Модифицированная полимерная композитная арматура 2023
  • Семенов Антон Николаевич
  • Старовойтова Ирина Анатольевна
  • Зыкова Евгения Сергеевна
RU2826026C1
СЛОИСТЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2008
  • Жабрев Валентин Александрович
  • Горбачев Владимир Николаевич
  • Лиснянски Марк Эликович
RU2381904C1
ГРАДИЕНТНЫЙ МЕТАЛЛОСТЕКЛОПЛАСТИК И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2014
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Сенаторова Ольга Григорьевна
  • Шестов Виталий Викторович
  • Лукина Наталья Филипповна
  • Сидельников Василий Васильевич
  • Попов Юрий Олегович
RU2565215C1
СЛОИСТЫЙ АЛЮМОСТЕКЛОПЛАСТИК И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2015
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Сенаторова Ольга Григорьевна
  • Махсидов Владимир Владимирович
  • Шестов Виталий Викторович
  • Иошин Дмитрий Владимирович
RU2600765C1
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Файков Павел Петрович
  • Зараменских Ксения Сергеевна
  • Попова Нелля Александровна
  • Федосова Наталья Алексеевна
  • Жариков Евгений Васильевич
  • Кольцова Элеонора Моисеевна
RU2517146C2
ЭПОКСИДНАЯ КОМПОЗИЦИЯ 2010
  • Мухаметов Рамиль Рифович
  • Ахмадиева Ксения Расимовна
  • Чурсова Лариса Владимировна
  • Каблов Евгений Николаевич
  • Хрульков Александр Владимирович
  • Душин Михаил Иванович
RU2447104C1
Способ повышения прочности на разрыв волокнистых композитов с помощью предварительной модификации углеволокон углеродными нанотрубками и молекулами, содержащими аминогруппы 2019
  • Нелюб Владимир Александрович
  • Орлов Максим Андреевич
  • Калинников Александр Николаевич
  • Бородулин Алексей Сергеевич
  • Комаров Иван Александрович
  • Левин Денис Дмитриевич
  • Ромашкин Алексей Валентинович
  • Поликарпов Юрий Александрович
  • Стручков Николай Сергеевич
RU2743566C1
ВЫСОКОПРОЧНЫЙ ЭПОКСИДНЫЙ ПЛЕНОЧНЫЙ КЛЕЙ 2015
  • Каблов Евгений Николаевич
  • Чурсова Лариса Владимировна
  • Шарова Ирина Алексеевна
  • Рубцова Екатерина Владимировна
  • Куцевич Кирилл Евгеньевич
  • Хина Михаил Борисович
  • Панфилова Анастасия Михайловна
RU2597912C1
ЭПОКСИДНАЯ КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ МЕТОДОМ ВАКУУМНОЙ ИНФУЗИИ 2012
  • Каблов Евгений Николаевич
  • Чурсова Лариса Владимировна
  • Гращенков Денис Вячеславович
  • Бабин Анатолий Николаевич
  • Соколов Игорь Иллиодорович
  • Панина Наталия Николаевна
  • Гуревич Яков Михайлович
  • Ким Михаил Александрович
RU2488612C1

Реферат патента 2012 года ДИФФУЗОР ГРОМКОГОВОРИТЕЛЯ ИЗ КОМПОЗИЦИОННОГО МАТЕРИАЛА

Изобретение относится к области диффузоров громкоговорителей с катушкой подвижного типа. Может применяться для изготовления громкоговорителей высококачественных акустических систем. Диффузор громкоговорителя включает матрицу из пористого никеля со степенью пористости от 90 до 98%, на заднюю поверхность которой наклеена алюминиевая фольга при помощи клеевого состава на основе эпоксидной смолы и отвердителя. Дополнительно в эпоксидную смолу вводят упрочняющий наполнитель в виде комбинации порошка размером 1-1000 нм материала с модулем упругости более 2,46 ГПа содержанием до 50 об.% и углеродных нанотрубок в количестве от 0,01 до 10 об.%. Техническим результатом изобретения является повышение прочности и жесткости материала диффузора.

Формула изобретения RU 2 453 071 C1

Диффузор громкоговорителя, включающий матрицу из пористого никеля со степенью пористости от 90 до 98%, на заднюю поверхность которой наклеена алюминиевая фольга при помощи клеевого состава на основе эпоксидной смолы и отвердителя, отличающийся тем, что в эпоксидную смолу дополнительно вводят упрочняющий наполнитель в виде комбинации порошка размером 1-1000 нм материала с модулем упругости более 2,46 ГПа, содержанием до 50 об.% и углеродных нанотрубок в количестве от 0,01 до 10 об.%.

Документы, цитированные в отчете о поиске Патент 2012 года RU2453071C1

RU 94031726 А1, 20.08.1996
СПОСОБ ИЗГОТОВЛЕНИЯ ДИФФУЗОРАТ ,;:.С-:.аг-Е:нДйБИБЛИОТЕКА 0
  • В. Л. Гаврилов, И. С. Шульман
SU354613A1
US 4129195 А, 12.12.1978
JP 56065596 А, 03.06.1981
KR 101002508 В1, 17.12.2010
US 2009045005 А1, 19.02.2009
KR 20030028795 А, 10.04.2003.

RU 2 453 071 C1

Авторы

Козлов Михаил Романович

Даты

2012-06-10Публикация

2011-02-17Подача