СПОСОБ ПРОИЗВОДСТВА ЛИТОЙ МИШЕНИ ДЛЯ МАГНЕТРОННОГО РАСПЫЛЕНИЯ ИЗ СПЛАВА НА ОСНОВЕ МОЛИБДЕНА Российский патент 2012 года по МПК C23C14/35 C22C27/04 H01J23/00 

Описание патента на изобретение RU2454484C2

Изобретение относится к области металлургического производства распыляемых металлических мишеней для микроэлектроники, а также к материаловедению токопроводящих систем полупроводниковых систем и интегральных схем. Молибден представляет значительный интерес в связи с его уникальными возможностями как материала низкоомных контактов с кремнием и токопроводящих систем. Молибден имеет низкое удельное электросопротивление и наиболее близкую к кремнию величину коэффициента термического расширения. Однако использование молибдена даже высокой чистоты осложняется трудностями получения пленок с физическими свойствами массивных образцов. В настоящее время основной промышленной технологией нанесения тонких пленок в промышленности является магнетронное распыление мишеней.

Известен электродный материал, включающий молибден с содержанием более 50 мас.% кремния, который представляет собой сложное химическое соединение молибдена и кремния нестехиометрического состава [Патент Японии №4926463]. Этот сплав характеризуется высоким удельным сопротивлением и нестабильностью свойств, что обусловлено крайне неравновесным состоянием и является существенным недостатком, особенно в случае высокотемпературной обработки (до 900°С) при производстве МОП-структур по технологии с самосовмещающимся затвором. Известен материал, содержащий молибден, кремний и металл платиновой группы [А.с. СССР №611520]. В этом материале при термообработке тонкопленочных структур образуются химические соединения и твердые растворы, что приводит к изменению электрофизических свойств пленок и особенно контактов молибден-кремний. При этом неконтролируемо изменяется электросопротивление пленки, работа выхода электронов, потенциальный барьер контактов и др.

Известны способы, принятые за прототип, получения литых мишеней из молибдена высокой чистоты [RU №2349657, RU №2356964], распыление которых позволяет наносить тонкопленочную металлизацию на кремниевые структуры. При всех неоспоримых физических и технологических достоинствах литых мишеней из молибдена высокой чистоты при нанесении металлизации возникают проблемы адгезии молибдена к кремнию и неконтролируемого образования нестехиометрических соединений на границе раздела молибден-кремний. Другим недостатком является повышенная окисляемость пленок молибдена при термообработке в инертной атмосфере и при химической обработке в растворе моноэтаноламин + диметилформамид (1:3), что отрицательно сказывается на стабильности, например, порогового напряжения в МОП-структурах (МОП - металл-окисел-полупроводник). Оптимальным путем устранения этого недостатка оказалось легирование молибдена кремнием при полном сохранении высокой чистоты молибдена по всем остальным примесям. Присутствие в молибдене кремния в случае использования данного материала в качестве контактного к полупроводнику повышает стабильность скрытых контактов при высокотемпературных обработках (до 900°С) вследствие ограничения диффузии атомов кремния из подложки при образовании фазы силицида молибдена на границе раздела молибден-кремний.

Задача изобретения состоит в повышении качества полупроводниковых микроприборов за счет повышения химической стойкости молибдена, используемого в качестве материала токопроводящих систем, а также стабильности величины переходного сопротивления контактов при термообработке.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Это достигается тем, что используется способ производства литой мишени для магнетронного распыления из сплава на основе молибдена, включающий получение слитка сплава на основе молибдена, отличающийся тем, что предварительно получают поликристаллический слиток молибдена высокой чистоты путем глубокого вакуумного рафинирования электронно-лучевым капельным переплавом заготовки, изготовленной из молибдена высокой чистоты, затем проводят дуговой вакуумный переплав поликристаллического слитка молибдена высокой чистоты с полосами из монокристаллического кремния высокой чистоты, причем количество полос выбирают из условия получения поликристаллического слитка сплава с составом молибден - 0,005-1,0 мас.% кремния, который подвергают механической обработке. Литую мишень для магнетронного распыления из сплава на основе молибдена получают указанным способом.

Нижний предел выбранного соотношения ограничен низкой устойчивостью предлагаемого материала к окислению при термообработке и химической обработке, когда содержание кремния в высокочистом молибдене оказывается менее 0,005 мас.%.

Верхний предел содержания кремния в молибдене ограничен необходимостью иметь низкое удельное электросопротивление предлагаемого материала, а также возможностью воспроизводимого получения тонкопленочных элементов при фотолитографической обработке. В случае превышения содержания кремния 1,0 мас.% в молибдене значительно возрастает удельное сопротивление материала, что может приводить к снижению быстродействия интегральных схем, а также затруднить процесс травления тонких пленок из предлагаемого сплава.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Способ осуществляют следующим образом. Исходные заготовки молибдена помещают в плавильную камеру электронно-лучевой печи, производят откачку камеры для создания вакуума и постепенно расплавляют заготовки, подводя их под электронный луч, создаваемый аксиальной пушкой. Затем поликристаллический слиток молибдена с добавкой кремния переплавляют в электродуговой вакуумной установке с интенсивным электромагнитным перемешиванием расплава. Для создания продольного электромагнитного поля используют соленоид постоянного тока, намотанный на рубашку охлаждения вертикального кристаллизатора. Вращение расплава способствует усреднению химического состава по кремнию, устранению температурных градиентов и получению мелкозернистой литой структуры вследствие разрушения кристаллитов и появления дополнительных центров кристаллизации.

Пример реализации способа

Реализацию способа осуществили при изготовлении литых мишеней из сплава на основе молибдена. В качестве исходного материала для получения слитков молибдена использовали заготовки, изготовленные прессованием порошков молибдена высокой чистоты. Рафинирование производили с помощью электронно-лучевой плавки в высоком вакууме на установке в вертикальном кристаллизаторе, в результате чего получали поликристаллические слитки молибдена высокой чистоты диаметром 80 мм. Скорость электронно-лучевого переплава составляла 0,5-0,6 кг/мин. Вдоль поликристаллического слитка высокочистого молибдена через каждые 90-100 мм крепили полосы высокочистого монокристаллического кремния, для чего использовали тонкую молибденовую проволоку. Количество закрепленных полос кремния зависело от заданной концентрации кремния в сплаве в пределах 0,005-1,0 мас.%. Второй вакуумный переплав поликристаллического слитка молибдена высокой чистоты с закрепленными полосами кремния производили в электродуговой вакуумной установке, оснащенной устройством для электромагнитного перемешивания расплава. В результате получали поликристаллический слиток сплава на основе молибдена с заданным содержанием кремния. Диаметр слитка - до 200 мм при длине 1000 мм. Слиток разрезали на ленточном электроискровом станке на плоские заготовки для изготовления мишеней. Механическую обработку заготовок производили до получения распыляемых мишеней заданной геометрии. Содержание кремния в образцах контролировали с помощью масс-спектрометрии. Выплавлено три слитка сплава на основе молибдена с содержанием кремния 0,008, 0,1 и 0,8 мас.%, а также один слиток молибдена высокой чистоты (без легирования кремнием). Диаметр слитков 200 мм. Изготовлено по две распыляемых мишени из каждого слитка - всего 8 круглых распыляемых мишеней диаметром до 190 мм для установки «Оратория-5». Проведено детальное исследование как процессов магнетронного распыления мишеней из молибдена высокой чистоты, так и тонких пленок, полученных распылением мишеней всех четырех сплавов. Тонкопленочные слои сплава молибден-кремний (0,008 мас.%) толщиной 0,15 мкм на тестовых структурах получали распылением мишеней соответствующего состава. Затем проводили фотолитографическую гравировку полученных пленок с травлением в 50%-ном растворе НNО3, после чего при температуре 140°С наносили межслойный диэлектрик, в котором вскрывали контактные окна к поверхности молибдена путем плазмохимического травления через маску фоторезиста и который затем удаляли в растворе моноэтаноламин+диметилформамид (1:3). Формирование второго уровня токопроводящего слоя осуществляли нанесением пленки алюминия толщиной 1,2 мкм с последующей фотолитографической гравировкой. Отжиг полученных тестовых структур производили в атмосфере азота при температуре 430°С в течение 15 мин. Деградацию тестовых структур определяли на микроскопе по наличию темных участков на внешней части контактов, что свидетельствует об окислении материала нижнего уровня токопроводящей системы. Результаты испытаний тестовых структур приведены в Таблице 1.

Таблица 1 Деградация тестовых структур Условия термообработки Деградация тестовых структур, % Материал нижнего уровня токопроводящей системы Мо ВЧ Mo+Si (0,008%) Mo+Si(0,8%) Mo+Si(0,8%) Т=430°С, t=15 мин, Азот 11 5,5 4 3

Для оценки термостабильности контактов молибден-кремний изготавливали тестовые структуры, позволяющие измерять переходное сопротивление контактов четырехточечным методом. Отжиг тестовых структур с пленками толщиной 0,2 мкм проводили в атмосфере аргона при температурах 800°С и 900°С в течение 15 минут. Результаты испытаний тестовых структур на увеличение переходного сопротивления приведены в Таблице 2.

Таблица 2 Увеличение переходного сопротивления Условия термообработки Увеличение переходного сопротивления, % Материал контакта Мо ВЧ Mo+Si(0,008%) Mo+Si(0,1%) Mo+Si(0,8%) Т=800°С, t=15 мин, аргон 40 20 14 10 Т=900°С, t=15 мин, аргон 53 26 17 13

Таким образом, использование предлагаемого способа получения литых мишеней из молибдена, легированного кремнием, позволяет заметно повысить качество интегральных схем за счет повышения химической стойкости материала токопроводящих систем и стабильности величины переходного сопротивления контактов при термообработке. Учитывая перечисленную совокупность преимуществ, это позволяет получить более высокий технико-экономический эффект, который проявляется в повышении качества интегральных схем и увеличении выхода годных изделий.

Похожие патенты RU2454484C2

название год авторы номер документа
РАСПЫЛЯЕМЫЕ МИШЕНИ ИЗ ВЫСОКОЧИСТЫХ СПЛАВОВ НА ОСНОВЕ ПЕРЕХОДНЫХ МЕТАЛЛОВ И СПОСОБ ИХ ПРОИЗВОДСТВА 2009
  • Глебовский Вадим Георгиевич
RU2392685C1
СОСТАВНАЯ МИШЕНЬ ДЛЯ РАСПЫЛЕНИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2009
  • Глебовский Вадим Георгиевич
RU2392686C1
СПОСОБ ПОЛУЧЕНИЯ СОСТАВНОЙ МИШЕНИ ДЛЯ РАСПЫЛЕНИЯ ИЗ СПЛАВА ВОЛЬФРАМ-ТИТАН-РЕНИЙ 2010
  • Глебовский Вадим Георгиевич
RU2454482C2
СПОСОБ ПОЛУЧЕНИЯ СОСТАВНОЙ МИШЕНИ ДЛЯ РАСПЫЛЕНИЯ ИЗ СПЛАВА ВОЛЬФРАМ-ТИТАН-КРЕМНИЙ 2010
  • Глебовский Вадим Георгиевич
RU2454481C2
СПОСОБ ПРОИЗВОДСТВА ЛИТОЙ МИШЕНИ ИЗ СПЛАВА НА ОСНОВЕ ТАНТАЛА ДЛЯ МАГНЕТРОННОГО РАСПЫЛЕНИЯ 2010
  • Глебовский Вадим Георгиевич
RU2454483C2
РАСПЫЛЯЕМАЯ МИШЕНЬ ИЗ МОЛИБДЕНА ВЫСОКОЙ ЧИСТОТЫ И СПОСОБ ЕЕ ПРОИЗВОДСТВА 2007
  • Глебовский Вадим Георгиевич
  • Штинов Евгений Дмитриевич
RU2365673C2
СПОСОБ ПРОИЗВОДСТВА РАСПЫЛЯЕМЫХ МИШЕНЕЙ ИЗ ЛИТЫХ ДИСИЛИЦИДОВ ТУГОПЛАВКИХ МЕТАЛЛОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2007
  • Глебовский Вадим Георгиевич
  • Штинов Евгений Дмитриевич
RU2356964C1
ВОЛЬФРАМ-ТИТАНОВАЯ МИШЕНЬ ДЛЯ МАГНЕТРОННОГО РАСПЫЛЕНИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2007
  • Глебовский Вадим Георгиевич
  • Штинов Евгений Дмитриевич
  • Кочетов Олег Савельевич
RU2352684C1
СПОСОБ ПРОИЗВОДСТВА МОЛИБДЕНА ВЫСОКОЙ ЧИСТОТЫ ГЛЕБОВСКОГО 2007
  • Глебовский Вадим Георгиевич
  • Штинов Евгений Дмитриевич
  • Пашков Алексей Иванович
  • Кочетов Олег Савельевич
RU2351669C1
СПОСОБ ПОЛУЧЕНИЯ СЛИТКА ПСЕВДО β-ТИТАНОВОГО СПЛАВА, СОДЕРЖАЩЕГО (4,0-6,0)% Аl, (4,5-6,0)% Мo, (4,5-6,0)% V, (2,0-3,6)% Cr, (0,2-0,5)% Fe, (0,1-2,0)% Zr 2010
  • Тетюхин Владислав Валентинович
  • Левин Игорь Васильевич
RU2463365C2

Реферат патента 2012 года СПОСОБ ПРОИЗВОДСТВА ЛИТОЙ МИШЕНИ ДЛЯ МАГНЕТРОННОГО РАСПЫЛЕНИЯ ИЗ СПЛАВА НА ОСНОВЕ МОЛИБДЕНА

Изобретение относится к области металлургии цветных металлов и может быть использовано при производстве распыляемых металлических мишеней для нанесения тонкопленочной металлизации различного назначения в микроэлектронике и других высоких технологиях. Заявлены способ производства литой мишени для магнетронного распыления из сплава на основе молибдена и полученная этим способом мишень. Способ включает получение слитка сплава на основе молибдена. Предварительно получают поликристаллический слиток молибдена высокой чистоты путем глубокого вакуумного рафинирования электронно-лучевым капельным переплавом заготовки, изготовленной из молибдена высокой чистоты, затем проводят дуговой вакуумный переплав поликристаллического слитка молибдена высокой чистоты с полосами из монокристаллического кремния высокой чистоты, причем количество полос выбирают из условия получения поликристаллического слитка сплава с составом молибден - 0,005-1,0 мас.% кремния, который подвергают механической обработке. Повышается качество полупроводниковых приборов и интегральных схем за счет повышения химической стойкости пленок, а также стабильности величины переходного сопротивления контактов при термообработке. 2 н.п. ф-лы, 2 табл., 1 пр.

Формула изобретения RU 2 454 484 C2

1. Способ производства литой мишени для магнетронного распыления из сплава на основе молибдена, включающий получение слитка сплава на основе молибдена, отличающийся тем, что предварительно получают поликристаллический слиток молибдена высокой чистоты путем глубокого вакуумного рафинирования электронно-лучевым капельным переплавом заготовки, изготовленной из молибдена высокой чистоты, затем проводят дуговой вакуумный переплав поликристаллического слитка молибдена высокой чистоты с полосами из монокристаллического кремния высокой чистоты, причем количество полос выбирают из условия получения поликристаллического слитка сплава с составом молибден - 0,005-1,0 мас.% кремния, который подвергают механической обработке.

2. Литая мишень для магнетронного распыления из сплава на основе молибдена, отличающаяся тем, что она получена способом по п.1.

Документы, цитированные в отчете о поиске Патент 2012 года RU2454484C2

СПОСОБ ПРОИЗВОДСТВА РАСПЫЛЯЕМЫХ МИШЕНЕЙ ИЗ ЛИТЫХ ДИСИЛИЦИДОВ ТУГОПЛАВКИХ МЕТАЛЛОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2007
  • Глебовский Вадим Георгиевич
  • Штинов Евгений Дмитриевич
RU2356964C1
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
US 5447616 A, 05.09.1995
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1

RU 2 454 484 C2

Авторы

Глебовский Вадим Георгиевич

Даты

2012-06-27Публикация

2010-05-19Подача