ХОЛОДИЛЬНО-ТЕХНОЛОГИЧЕСКИЙ КОМПЛЕКС ДЛЯ ПРЕДВАРИТЕЛЬНОГО ОХЛАЖДЕНИЯ И ВРЕМЕННОГО ХРАНЕНИЯ РЫБЫ Российский патент 2012 года по МПК F25C1/00 F25J1/00 

Описание патента на изобретение RU2454615C1

Изобретение относится к холодильной технике и может быть использовано для производства бинарного льда (жидкого гелеобразного льда, ледяной шуги, айс-сларри) в холодильно-технологическом комплексе для предварительного охлаждения и временного хранения рыбы.

Известна установка для получения ледяной шуги, содержащая емкость, в которую из резервуара насосом закачивают жидкость, которую распыляют в свободном объеме емкости, в верхней части которой расположен десублиматор и патрубок вакуумного насоса. Десублиматор заполняют из резервуара хладагентом, температура кипения которого ниже температуры затвердевания жидкости. Вибратором удаляют твердую фазу, возникающую на поверхности десублиматора в процессе испарения распыленной жидкости. Перемешивание жидкости осуществляют мешалкой. Подачу хладагента в десублиматор и удаление шуги из емкости осуществляют с помощью кранов (Авторское свидетельство SU 1483211 А1, МПК 8 F125C 1/16, опубл. 28.01.1987).

Недостатком известной установки является наличие вакуума, что усложняет ее и снижает надежность.

Техническим результатом является упрощение, повышение надежности и снижение энергопотребления.

Указанный технический результат достигается тем, что установка для производства бинарного льда содержит контур хладагента, включающий последовательно соединенные трубопроводом компрессор, маслоотделитель, конденсатор, ресивер, фильтр-осушитель, смотровое стекло и отделитель жидкости, и контур рассола, включающий последовательно соединенные трубопроводом рассола теплоизолированную емкость, снабженную мешалкой и входом для подачи рассола, первый кран, насос, регулирующий вентиль, предохладитель, первый и второй кристаллизаторы, второй кран, при этом отделитель жидкости через трубопровод хладагента, первый соленоидный вентиль, первый терморегулирующий вентиль соединен с входом предохладителя, а через второй соленоидный вентиль, второй терморегулирующий вентиль соединен с первым кристаллизатором, выход предохладителя посредством трубопровода газообразного хладагента, регулятора давления и отделителя жидкости связан с компрессором, с которым посредством масляного трубопровода соединен выход маслоотделителя.

Кристаллизаторы выполнены цилиндрическими скребкового типа.

Кроме того, в установке выход второго кристаллизатора посредством трубопровода бинарного льда и дополнительного крана может быть соединен с теплоизолированной емкостью и снабжен насосом для выдачи бинарного льда из указанной емкости.

Установка также отличается тем, что снабжена вторым компрессором, связанным через воздушный трубопровод, регулирующий вентиль и обратный клапан с первым кристаллизатором.

На фиг.1 представлена схема установки для производства бинарного льда для холодильно-технологического комплекса для предварительного охлаждения и временного хранения рыбы.

Установка для производства бинарного льда содержит два пневмогидравлических контура: контур хладагента и контур рассола.

Контур хладагента содержит последовательно соединенные трубопроводом хладагента (ГХ) компрессор 1, маслоотделитель 2, конденсатор 3, ресивер 4, фильтр-осушитель 5, смотровое стекло 6, отделитель жидкости 7.

Контур рассола содержит последовательно соединенные трубопроводом рассола (В) теплоизолированную емкость 8, первый запорный кран 9, насос 10, регулирующий вентиль 11, второй запорный кран 12, предохладитель 13, первый кристаллизатор 14 и второй кристаллизатор 15, третий запорный кран 16 для выдачи бинарного льда потребителю.

Выход отделителя 7 жидкости трубопроводом жидкого хладагента (ЖХ) и через первые соленоидный вентиль 17, терморегулирующий вентиль 18 соединен с входом предохладителя 13, а через вторые соленоидный вентиль 19 и терморегулирующий вентиль 20 соединен с цилиндром первого кристаллизатора 14. Выход предохладителя 13 через четвертый запорный кран 21 соединен с первым кристаллизатором 14. Другой выход предохладителя 13 трубопроводом газообразного хладагента и через регулятор 22 давления и отделитель 7 жидкости соединен с компрессором 1, который масляным трубопроводом (М) связан с маслоотделителем 2.

Кристаллизаторы 14 и 15 выполнены цилиндрическими скребкового типа.

Теплоизолированная емкость снабжена мешалкой с лопастями 23 и входом для подачи рассола.

Дополнительно установка для производства бинарного льда может быть снабжена пятым запорным краном 24, установленным в трубопроводе бинарного льда, соединяющего выход второго кристаллизатора 15 с теплоизолированной емкостью 8 и дополнительным насосом 25, шестым запорным краном 26, установленным в трубопроводе бинарного льда (БЛ), соединяющем насос 25 с теплоизолированной емкостью 8, что позволит обеспечить выдачу бинарного льда потребителям из емкости 8.

Для интенсификации кристаллообразования в рассол установка может быть снабжена вторым компрессором 27, регулирующим вентилем 28 и обратным клапаном 30, установленным в воздушном трубопроводе (Воз.), соединяющем второй компрессор 27 с цилиндром первого кристаллизатора 14.

Установка может быть снабжена автоматическим соленоидом 31, установленным в линии перепуска горячего газообразного хладагента, соединяющей линию нагнетания компрессора с предохладителем 13, кристаллизаторами 14, 15.

Установка работает следующим образом.

Циркуляция хладагента осуществляется с помощью компрессора 1. Газообразный хладагент, сжимаясь в компрессоре 1 и проходя через маслоотделитель 2, поступает в конденсатор 3, где конденсируется до жидкой фазы вследствие теплообмена с охлаждающей жидкостью. Затем жидкий хладагент, проходя через ресивер 4, фильтр-осушитель 5, смотровое стекло 6 и отделитель жидкости 7, разделяется на два потока. Один из потоков после дросселирования в терморегулирующем вентиле 17 поступает в предохладитель 13, где выкипает, охлаждая поток рассола. Затем газообразный хладагент через отделитель жидкости 7 поступает на всасывание в компрессор 1. Второй поток хладагента после разделения дросселируется в терморегулирующем вентиле 18 и поступает сначала в цилиндр первого кристаллизатора 14, затем в цилиндр второго 15. Цилиндры кристаллизатора расположены горизонтально. При кипении хладагента в цилиндрах кристаллизатора происходит доохлаждение рассола до температуры льдообразования и образование бинарного льда. Затем газообразный хладагент смешивается с потоком, идущим из предохладителя 13, и поступает на всасывание в компрессор 1. Для обеспечения автоматической работы и возможности регулирования установки в контур хладагента установлены соленоидные вентили 17 и 19, регулятор давления 22 и обратный клапан 29.

Циркуляция рассола обеспечивается с помощью насоса 9. Рассол поступает в емкость 8, отбирается из нижней ее части и через кран 9 поступает в насос 10. После рассол подается в предохладитель 9, где происходит его предварительное охлаждение, затем в цилиндр кристаллизатора 14 и после него в цилиндр кристаллизатора 15. В цилиндрах происходит окончательное охлаждение рассола и образование из него бинарного льда. Лед выдается потребителям через кран 24. При необходимости, вместо крана 24 лед можно подавать в теплоизолированную емкость 8. Выдача льда из емкости потребителям осуществляется с помощью насоса 25. Для управления контуром рассола и льда установлены запорные краны 9, 12, 16, 21, 24, 26 и регулирующий вентиль 11.

Для интенсификации кристаллообразования в рассол с помощью компрессора 27 подается воздух. Регулирование подачи воздуха осуществляется с помощью регулирующего вентиля 29 и обратного клапана 30.

Особенностями данной установки являются:

Возможность работы в двух режимах: непрерывной выдачи и накопления бинарного льда. Рассол может, поступая в установку, сразу превращаться в лед необходимой концентрации и выдаваться потребителю через кран 24. Также возможна (при закрытом кране 24) подача льда в теплоизолированную емкость 8, где происходит расслоение льдоводяной смеси: лед остается в верхней части емкости и во избежание слипания перемешивается лопастями 23 мешалки, охлажденная вода забирается из нижней части емкости и поступает для образования нового льда в кристаллизаторы. Таким образом, емкость постепенно заполняется льдом высокой концентрации. Работа в последнем режиме не требует предварительного охлаждения в предохладителе 13, что позволяет примерно вдвое снизить энергопотребление установки. Указанный результат достигается за счет использования эффективного предохлаждения рассола одним из параллельных потоков хладагента с возможностью отключения его и за счет применения теплоизолированной накопительной емкости.

В случае аварийного замерзания рассола в предохладителе и кристаллизаторах автоматически осуществляется эффективная оттайка. Это достигается за счет использования линии перепуска горячего газообразного хладагента с линии нагнетания компрессора 1 непосредственно в теплообменники. Подача газа активируется автоматически соленоидным вентилем 31.

Похожие патенты RU2454615C1

название год авторы номер документа
ХОЛОДИЛЬНО-ТЕХНОЛОГИЧЕСКИЙ КОМПЛЕКС ДЛЯ ПРЕДВАРИТЕЛЬНОГО ОХЛАЖДЕНИЯ И ВРЕМЕННОГО ХРАНЕНИЯ РЫБЫ 2011
  • Дибнер Вильям Самойлович
  • Колесников Андрей Сергеевич
  • Макаров Борис Анатольевич
  • Уманский Вячеслав Львович
  • Клячко Лев Михайлович
  • Константинов Виктор Вениаминович
RU2498167C2
Установка для жидкостной заморозки пищи 2021
  • Балдуев Виктор Владимирович
RU2755945C1
Холодильная установка получения ледяной воды в пластинчатом испарителе 2019
  • Велюханов Виктор Иванович
  • Коптелов Константин Анатольевич
RU2718094C1
Каскадная холодильная машина с системой термостабилизации компрессора 2020
  • Бычков Евгений Геннадьевич
  • Яковлев Валентин Игоревич
  • Макаров Борис Анатольевич
  • Уманский Вячеслав Львович
  • Ковалев Александр Алексеевич
RU2743653C1
СПОСОБ И СИСТЕМА ОХЛАЖДЕНИЯ БОРТОВОГО ОБОРУДОВАНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА 2018
  • Тятинькин Виктор Викторович
  • Суворов Александр Витальевич
  • Беляков Максим Алексеевич
  • Воронов Дмитрий Олегович
  • Желваков Владимир Валентинович
RU2727220C2
ХОЛОДИЛЬНАЯ УСТАНОВКА С НАСОСНО-ЦИРКУЛЯЦИОННОЙ СИСТЕМОЙ ОХЛАЖДЕНИЯ 2005
  • Гущин Анатолий Васильевич
  • Шаззо Рамазан Измаилович
  • Рудаков Сергей Григорьевич
RU2285869C2
ХОЛОДИЛЬНАЯ УСТАНОВКА 2000
  • Шляховецкий В.М.
  • Шляховецкий Д.В.
RU2199706C2
ХОЛОДИЛЬНАЯ УСТАНОВКА С БЕЗНАСОСНОЙ СИСТЕМОЙ ОХЛАЖДЕНИЯ 2005
  • Гущин Анатолий Васильевич
  • Шаззо Рамазан Измаилович
  • Торбин Александр Сергеевич
RU2291359C2
Воздухоотделитель для холодильной системы 2020
  • Точеная Анастасия Олеговна
RU2729305C1
Льдогенератор 1990
  • Смирнов Юрий Анатольевич
  • Филин Сергей Олегович
  • Буданов Василий Алексеевич
SU1725044A1

Иллюстрации к изобретению RU 2 454 615 C1

Реферат патента 2012 года ХОЛОДИЛЬНО-ТЕХНОЛОГИЧЕСКИЙ КОМПЛЕКС ДЛЯ ПРЕДВАРИТЕЛЬНОГО ОХЛАЖДЕНИЯ И ВРЕМЕННОГО ХРАНЕНИЯ РЫБЫ

Установка для производства бинарного льда содержит контур хладагента, который включает последовательно соединенные трубопроводом компрессор, маслоотделитель, конденсатор, ресивер, фильтр-осушитель, смотровое стекло и отделитель жидкости, и контур рассола, первый запорный кран, насос, регулирующий вентиль, второй запорный кран, предохладитель, третий запорный кран, первый и второй кристаллизаторы, четвертый запорный кран. Контур рассола включает последовательно соединенные трубопроводом рассола теплоизолированную накопительную емкость, которая снабжена мешалкой и входом для подачи рассола. Отделитель жидкости через трубопровод хладагента, первый соленоидный вентиль, первый терморегулирующий вентиль соединен с входом предохладителя, а через второй соленоидный вентиль, второй терморегулирующий вентиль соединен с первым кристаллизатором. Выход предохладителя посредством трубопровода газообразного хладагента, регулятора давления и отделителя жидкости связан с компрессором, с которым посредством масляного трубопровода соединен выход маслоотделителя. Использование данного изобретения позволяет обеспечить упрощение выполнения холодильной установки, повышение ее надежности и снижение энергопотребления. 4 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 454 615 C1

1. Установка для производства бинарного льда, содержащая контур хладагента, включающий последовательно соединенные трубопроводом компрессор, маслоотделитель, конденсатор, ресивер, фильтр-осушитель, смотровое стекло и отделитель жидкости, и контур рассола, включающий последовательно соединенные трубопроводом рассола теплоизолированную накопительную емкость, снабженную мешалкой и входом для подачи рассола, первый запорный кран, насос, регулирующий вентиль, второй запорный кран, предохладитель, третий запорный кран, первый и второй кристаллизаторы, четвертый запорный кран, при этом отделитель жидкости через трубопровод хладагента, первый соленоидный вентиль, первый терморегулирующий вентиль соединен с входом предохладителя, а через второй соленоидный вентиль, второй терморегулирующий вентиль соединен с первым кристаллизатором, выход предохладителя посредством трубопровода газообразного хладагента, регулятора давления и отделителя жидкости связан с компрессором, с которым посредством масляного трубопровода соединен выход маслоотделителя.

2. Установка по п.1, котором кристаллизаторы выполнены цилиндрическими скребкового типа.

3. Установка по п.1 или 2, в котором выход второго кристаллизатора посредством трубопровода бинарного льда и пятого запорного крана соединен с теплоизолированной накопительной емкостью и снабжена вторым насосом, шестым запорным краном, установленным в трубопроводе бинарного льда, соединяющим второй насос с указанной емкостью.

4. Установка по п.3 снабжена вторым компрессором, связанным через воздушный трубопровод, регулирующий вентиль и обратный клапан с первым кристаллизатором.

5. Установка по п.4 снабжена автоматическим соленоидным вентилем, установленным в линии перепуска, связывающей линию нагнетания компрессора с предохладителем и кристаллизаторами.

Документы, цитированные в отчете о поиске Патент 2012 года RU2454615C1

СПОСОБ ПРОИЗВОДСТВА ШУГИ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА 2005
  • Икеути Масамицу
  • Матида Акито
  • Мацуо Коуити
RU2360193C1
Магнитокалорический генератор чешуйчатого льда 1991
  • Рязанцев Андрей Алексеевич
SU1784806A1
Способ получения шуги криогенной жидкости и струйный генератор шуги криогенной жидкости 1990
  • Петухов Илья Иванович
  • Шахов Юрий Васильевич
  • Сырый Владимир Николаевич
  • Куриленко Алексей Алексеевич
SU1779761A1
Автомат для нанесения катодного сплава на селеновые элементы 1953
  • Миловидов С.П.
SU103354A1
JP 8283001 A, 29.10.1996.

RU 2 454 615 C1

Авторы

Дибнер Вильям Самойлович

Колесников Андрей Сергеевич

Макаров Борис Анатольевич

Уманский Вячеслав Львович

Клячко Лев Михайлович

Константинов Виктор Вениаминович

Даты

2012-06-27Публикация

2010-12-14Подача