УСТРОЙСТВО ЗАЩИТЫ ЭЛЕКТРОУСТАНОВОК ОТ ПЕРЕГРЕВА Российский патент 2012 года по МПК H02H5/04 

Описание патента на изобретение RU2456730C1

Изобретение относится к электротехнике, а именно к устройствам защиты различных потребителей электроэнергии от тепловой перегрузки при повышенных токах или повышении температуры защищаемого корпуса изделия.

Известно устройство защиты электроустановок от перегрева, описанное в патенте (RU 2412336 С1, 20.02.2011).

В известном устройстве защита осуществляется путем выключения электрической сети за счет измерительных элементов, входящих в систему управления и содержащих насыщающуюся магнитную цепь. При превышении токовой нагрузки происходит изменение параметров измерительных элементов, что и приводит к срабатыванию тепловых реле с последующим отключением соответствующих силовых контактов.

Недостаток известного устройства состоит в том, что в нем исполнительные органы содержат силовые контакты, которые могут «залипнуть» или спаяться при больших токах нагрузки.

Работа большого числа электрических приборов (реле, контакторов, выключателей) основана на использовании разрывных контактов.

Как известно, при работе электрических контактов, как правило, возникает дуговой или искровой разряд, что ведет к постепенному разрушению материала контактных поверхностей. Разрывные контакты могут разрушаться в результате:

- коррозии, возникающей при химической реакции, во время появления искры или дуги;

- эрозии, т.е. переноса металла с контакта на контакт при прохождении электрического тока;

- износа, вызываемого своеобразием характера работы разрывных контактов - ударами и трением одного контакта о другой.

Между тем существует ряд производств, в которых появление дуги или искры недопустимо. К таким производствам относятся нефтехимические, горнорудные предприятия и т.д.

В качестве прототипа выбрано устройство, которое может быть использовано в качестве защиты от перегрева, описанное в патенте (RU 2382479 С1, 20.01.2010).

В известном устройстве механические разрывы электрической цепи отсутствуют, и все изменения происходят в замкнутой магнитной цепи за счет ферромагнитной вставки, обладающей температурой фазового перехода второго рода, при котором материал теряет свои магнитные свойства при нагревании. При охлаждении ферромагнитная вставка восстанавливает свои свойства до первоначального уровня.

Достоинство данного устройства заключается в том, что изменение магнитного поля не приводит к механическим разрывам в контактной цепи.

Недостаток известного устройства состоит том, что оно не может быть впрямую использовано для тепловой защиты при перегревах электротехнического объекта.

Задача изобретения состоит в том, чтобы обеспечить защиту различных потребителей электроэнергии от тепловой перегрузки при повышенных токах или повышении температуры защищаемого корпуса изделия без разрыва контактов в цепи управления, а в некоторых случаях и без разрыва силовой цепи.

Техническим результатом является создание устройства защиты различных потребителей электроэнергии от тепловой перегрузки при повышенных токах или повышении температуры защищаемого корпуса изделия, при котором не происходит разрыва электрической цепи управления.

Дополнительным техническим результатом является защита потребителей электрической энергии с относительно небольшой нагрузкой без разрыва электрической силовой цепи.

Технический результат достигается за счет того, что в устройстве защиты электроустановок от перегрева, содержащем ферромагнитную вставку из материала, обладающего температурой фазового перехода второго рода, при котором материал теряет свои магнитные свойства при нагревании и восстанавливает их до первоначального уровня при остывании, магнитная цепь выполнена наподобие магнитного усилителя, состоящего из трех стержней, изготовленных из магнитномягкой электротехнической стали, в котором два крайних стержня содержат силовые обмотки, соединенные согласно, последовательно и последовательно с нагрузкой, в среднем стержне сформирован постоянный магнитный поток, насыщающий всю магнитную цепь согласно изобретению, два крайних стержня расположены симметрично в одной плоскости, наподобие сердечника однофазного трансформатора, и выполнены из листовой стали, П-образный средний стержень выполнен из сплошного материала, расположен на оси симметрии упомянутого сердечника и плотно примыкает к нему с торцов, а ферромагнитная вставка установлена в среднем стержне и помещена в зону теплового воздействия.

Средний сердечник может содержать обмотку управления, питаемую от источника постоянного тока.

Средний стержень может содержать постоянный магнит.

Ферромагнитная вставка может содержать нагревательный элемент, с обмоткой, соединенной последовательно с нагрузкой.

Ферромагнитная вставка может быть расположена в зоне нагревательного элемента, нагреваемого от внешнего источника энергии.

Структура, в которой два крайних стержня расположены симметрично в одной плоскости, наподобие сердечника однофазного трансформатора, позволяет получать относительно простую конструкцию.

Выполнение среднего стержня из сплошного материала и расположение его на оси симметрии сердечника крайних стержней позволяет уменьшить размеры конструкции.

Соединение силовых обмоток согласно, последовательно и последовательно с нагрузкой является традиционной схемой соединения, свойственной магнитным усилителям, и обеспечивает правильность работы реле.

Установление ферромагнитной вставки в среднем стержне и помещение ее в зону теплового воздействия обеспечивает предложенный принцип работы предлагаемого теплового реле.

Наличие обмотки управления, помещенной на среднем сердечнике, и питание обмотки от источника постоянного тока обеспечивает стабильность работы теплового реле.

Наличие в среднем стержне постоянного магнита повышает надежность работы реле и позволяет снизить его габаритные размеры.

Наличие нагревательного элемента в ферромагнитной вставке, с обмоткой, соединенной последовательно с нагрузкой, обеспечивает обратную связь между силовым током и системой отключения.

Расположение ферромагнитной вставки в зоне нагревательного элемента, нагреваемого от внешнего источника энергии, позволяет реле реагировать на любой вид теплового воздействия, выполняя роль, например, противопожарного датчика.

Устройство защиты электроустановок от перегрева иллюстрируется пятью фигурами.

На фиг.1 изображена принципиальная конструкция магнитной цепи, выполненная в изометрической проекции.

На фиг.2 показана принципиальная конструкция магнитной системы при виде сбоку.

На фиг.3 представлена конструкция магнитной системы при виде спереди, со стороны силовых обмоток.

На фиг.4 имеется принципиальная электрическая схема реле.

На фиг.5 нарисована характеристика управления тепловым реле.

Устройство защиты электроустановок от перегрева выполнено следующим образом.

Устройство, демонстрирующее предложенный способ защиты электроустановок от перегрева, выполнено следующим образом. Магнитная цепь выполнена наподобие магнитного усилителя, состоящего из трех стержней 1, 2, 3 (фиг.1, 2, 3), изготовленных из магнитномягкой электротехнической стали. Два крайних стержня 1, 3 расположены симметрично в одной плоскости, наподобие сердечника 4 однофазного трансформатора и изготовлены из листовой стали. Средний стержень 2 выполнен из сплошного материала, имеет П-образную форму и содержит поперечину и две боковые ветви (на фиг. не обозначены). Средний стержень 2 расположен на оси симметрии сердечника 4 и плотно примыкает внутренними поверхностями боковых ветвей к сердечнику 4 с его торцов. На стержни намотаны силовые обмотки, обозначенные в следующей последовательности. На стержне 1 имеется обмотка 5, на стержне 2, на его поперечине - обмотка 6, и на стержне 3 - обмотка 7. Обмотки 5 и 7 являются силовыми и соединены согласно, последовательно. В среднем стержне 2 сформирован постоянный магнитный поток намагничивания, за счет питания обмотки 6 от источника постоянного тока. Этот магнитный поток насыщает всю магнитную цепь. Ферромагнитная вставка 8 установлена в среднем стержне 2, в нижней его ветви и помещена в зону теплового воздействия. Ферромагнитная вставка выполнена из материала, обладающего температурой фазового перехода второго рода, при котором материал теряет свои магнитные свойства при нагревании и восстанавливает их до первоначального уровня при остывании, Ферромагнитная вставка 8 может содержать обмотку 9, соединенную последовательно с нагрузкой и выполняющую функции нагревательного элемента. Вставка 8 может быть помещена в зону теплового воздействия источника нагрева 10 (фиг.3).

Обмотки 5 и 7 соединены последовательно с нагрузкой 11 (фиг.4). Обмотка 6 получает питание от цепи переменного тока через мостовой двухполупериодный выпрямитель 12.

Вольтамперная характеристика управления 13 тепловым реле аналогична характеристике магнитного усилителя и представляет собой зависимость силового тока Iс (фиг.5) в обмотках 5 и 7 от тока намагничивания Iн, протекающего в обмотке намагничивания 6. На характеристике имеется рабочая точка «а», соответствующая режиму, когда ферромагнитная вставка находится в холодном состоянии, и точка «b», соответствующая режиму, при котором ферромагнитная вставка нагрета до состояния, когда вставка теряет свои магнитные свойства.

Средний сердечник может содержать обмотку управления, питаемую от стороннего источника постоянного тока, например от аккумулятора

Средний стержень 3 может содержать постоянный магнит, вставленный в поперечину стержня 3 (не показан).

Ферромагнитная вставка может быть расположена в зоне нагревательного элемента, получающего тепло от внешнего источника энергии.

Устройство защиты электроустановок от перегрева действует следующим образом. В обмотку управления 6 (фиг.1, 2, 3, 4) подается ток намагничивания Iн, достаточный, чтобы насытить всю магнитную цепь. При этом, из-за небольшого сопротивления рабочих обмоток 5, 7 почти все напряжение падает на нагрузку 11. На нагрузке в этом случае выделяется максимальная мощность (см. рабочую точку «а» на фиг.5).

Если теперь произвести нагрев ферромагнитной вставки 8, доведя ее температуру до такого уровня, при котором ее материал теряет свои магнитные свойства, то магнитное сопротивление в среднем стержне резко возрастает. При этом магнитная цепь оказывается ненасыщенной. В результате реактивное сопротивление рабочих обмоток 5, 7 резко увеличивается, а величина тока в цепи нагрузки 11 уменьшается (см. точку «b» на фиг.5). При охлаждении вставки она восстанавливает свои первоначальные магнитные свойства, и ток нагрузки возрастает. Таким образом, воздействуя теплом на ферромагнитную вставку, обладающую температурой фазового перехода второго рода, при котором материал теряет свои магнитные свойства при нагревании и восстанавливает их до первоначального уровня при остывании, можно обеспечить защиту нагрузки от перегрева. При этом при изменении тока в цепи нагрузки нет разрывов электрического тока, нет искр и электрической дуги. Изменяя величину тока в обмотке 9, можно регулировать время срабатывания реле.

Магнитный поток в среднем стержне может быть образован за счет обмотки намагничивания, получающей питание от стороннего источника постоянного тока.

Если магнитный поток в среднем стержне образован за счет постоянного магнита, то на характеристике 12 рабочая точка «а» даже при отсутствии тока намагничивания смещается вправо. Нагрев ферромагнитной вставки оказывает действие, аналогичное описанному выше.

Магнитный поток в среднем стержне 3 может быть образован за счет питания обмотки намагничивания 8 от стороннего источника постоянного тока (не показан).

Магнитный поток в среднем стержне может быть образован за счет постоянного магнита, встроенного в тело среднего стрежня 3 (не показан). В этом случает наличие обмотки намагничивания 6 и выпрямителя 12 необязательны.

Достоинства предлагаемого способа защиты электроустановок от перегрева заключаются в том, что устройства формируются из простых известных технических средств, что позволяет легко изготовить такую конструкцию. При срабатывании защиты не происходит разрыва электрической цепи, благодаря чему при включении и выключении отсутствуют искры. Эта особенность способа обеспечивает с одной стороны высокую надежность таких реле и с другой стороны позволяет использовать такой тип тепловой защиты даже в средах, где появление искр недопустимо, например в угольных шахтах. В процессе работы в предлагаемых согласно способу устройствах не происходит окисление участвующих в отключении элементов.

Похожие патенты RU2456730C1

название год авторы номер документа
СПОСОБ ЗАЩИТЫ ЭЛЕКТРОУСТАНОВОК ОТ ПЕРЕГРЕВА 2011
  • Пащенко Федор Федорович
  • Торшин Владимир Викторович
  • Круковский Леонид Ефимович
RU2456731C1
СПОСОБ НАГРЕВА БИМЕТАЛЛИЧЕСКОЙ ПЛАСТИНЫ НАГРЕВАТЕЛЬНЫМ ЭЛЕМЕНТОМ 2010
  • Михаханов Бугда Соронович
RU2458444C9
Универсальное трехпозиционное реле тока 2018
  • Михаханов Бугда Соронович
RU2747926C2
Электромагнитный фильтр 1983
  • Алеко Владимир Алексеевич
  • Гайдаш Борис Иванович
  • Лебедев Михаил Борисович
  • Логвинов Константин Никитович
  • Невольниченко Борис Иванович
SU1142140A1
СПОСОБ ЗАЩИТЫ ЭЛЕКТРОНАГРЕВАТЕЛЬНОГО ПРИБОРА ОТ ПЕРЕГРЕВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Абезгауз Б.С.
  • Рафалькес Б.М.
RU2041573C1
ТРЕХСТЕРЖНЕВОЙ ОДНОФАЗНЫЙ МАГНИТНЫЙ УСИЛИТЕЛЬ С ЗАЩИТОЙ ОТ ПРОНИКНОВЕНИЯ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ В ЦЕПЬ УПРАВЛЕНИЯ 2013
  • Орлов Павел Сергеевич
  • Голдобина Любовь Александровна
  • Шкрабак Владимир Степанович
  • Орлов Артем Павлович
  • Чернова Юлия Александровна
  • Парамонов Сергей Александрович
  • Челышев Кирилл Александрович
  • Бекасова Валентина Александровна
RU2522999C1
Устройство для защиты трехфазного асинхронного электродвигателя от анормальных режимов работы В.Г.Вохмянина 1989
  • Вохмянин Владислав Григорьевич
SU1764118A1
ДИФФЕРЕНЦИАЛЬНЫЙ ТРАНСФОРМАТОР ТОКА 2015
  • Анисимов Юрий Николаевич
  • Костарев Николай Павлович
  • Дуля Любовь Викторовна
  • Анисимов Михаил Юрьевич
RU2618168C2
УСИЛИТЕЛЬ МАГНИТНОГО ПОТОКА И СИЛОВЫЕ ЭЛЕКТРОТЕХНИЧЕСКИЕ УСТРОЙСТВА НА ЕГО ОСНОВЕ 2000
  • Гусев П.Г.
  • Богослов А.В.
  • Крюковский В.Б.
RU2201001C2
ТЭН С ЗАЩИТОЙ ОТ ПЕРВИЧНОЙ НАКИПИ (ВАРИАНТЫ) 2008
  • Мордвинов Юрий Александрович
  • Мордвинов Михаил Юрьевич
  • Силина Наталья Юрьевна
RU2385552C1

Иллюстрации к изобретению RU 2 456 730 C1

Реферат патента 2012 года УСТРОЙСТВО ЗАЩИТЫ ЭЛЕКТРОУСТАНОВОК ОТ ПЕРЕГРЕВА

Изобретение относится к электротехнике, а именно к устройствам защиты различных потребителей электроэнергии от тепловой перегрузки при повышенных токах или повышении температуры защищаемого корпуса изделия. Технический результат - обеспечение защиты различных потребителей электроэнергии от тепловой перегрузки при повышенных токах или повышении температуры защищаемого корпуса изделия без разрыва контактов в цепи управления, а в некоторых случаях и без разрыва силовой цепи. Магнитная цепь выполнена наподобие магнитного усилителя, состоящего из трех стержней, изготовленных из магнитомягкой электротехнической стали. Два крайних стержня расположены симметрично в одной плоскости, наподобие сердечника (4) однофазного трансформатора, и изготовлены из листовой стали. Средний стержень выполнен из сплошного материала, имеет П-образную форму и содержит поперечину и две боковые ветви. Средний стержень расположен на оси симметрии сердечника (4) и плотно примыкает внутренними поверхностями боковых ветвей к сердечнику (4) с его торцов. На стержни намотаны силовые обмотки. В среднем стержне сформирован постоянный магнитный поток намагничивания. Ферромагнитная вставка установлена в среднем стержне, в нижней его ветви и помещена в зону теплового воздействия. Ферромагнитная вставка выполнена из материала, обладающего температурой фазового перехода второго рода. 4 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 456 730 C1

1. Устройство защиты электроустановок от перегрева, содержащее ферромагнитную вставку из материала, обладающего температурой фазового перехода второго рода, при котором материал теряет свои магнитные свойства при нагревании и восстанавливает их до первоначального уровня при остывании, магнитную цепь, выполненную наподобие магнитного усилителя, состоящую из трех стержней, изготовленных из магнитомягкой электротехнической стали, в котором два крайних стержня содержат силовые обмотки, соединенные согласно-последовательно и последовательно с нагрузкой, в среднем стержне сформирован постоянный магнитный поток, насыщающий всю магнитную цепь, отличающееся тем, что два крайних стержня расположены симметрично в одной плоскости, наподобие сердечника однофазного трансформатора, и выполнены из листовой стали, П-образный средний стержень выполнен из сплошного материала, расположен на оси симметрии упомянутого сердечника и плотно примыкает к нему с торцов, а ферромагнитная вставка установлена в среднем стержне и помещена в зону теплового воздействия.

2. Устройство защиты по п.1, отличающееся тем, что средний сердечник содержит обмотку управления, питаемую от источника постоянного тока.

3. Устройство защиты по п.1, отличающееся тем, что средний стержень содержит постоянный магнит.

4. Устройство защиты по п.1, отличающееся тем, что ферромагнитная вставка содержит нагревательный элемент с обмоткой, соединенной последовательно с нагрузкой.

5. Устройство защиты по п.1, отличающееся тем, что ферромагнитная вставка расположена в зоне нагревательного элемента, нагреваемого от внешнего источника энергии.

Документы, цитированные в отчете о поиске Патент 2012 года RU2456730C1

УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ ЭНЕРГИЮ 2009
  • Пащенко Федор Федорович
  • Торшин Владимир Викторович
  • Круковский Леонид Ефимович
RU2382479C1
RU 2064215 C1, 20.07.1996
RU 93011703 A, 10.03.1995
US 4863280 A1, 05.09.1989.

RU 2 456 730 C1

Авторы

Пащенко Федор Федорович

Торшин Владимир Викторович

Круковский Леонид Ефимович

Даты

2012-07-20Публикация

2011-06-08Подача