МАГНИТНЫЙ ФЕРРИТОМЕТР ДЛЯ ОПРЕДЕЛЕНИЯ ЭКВИВАЛЕНТНОЙ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ НАРУЖНОЙ ПОВЕРХНОСТИ ПАРОПЕРЕГРЕВАТЕЛЬНЫХ ТРУБ ИЗ АУСТЕНИТНЫХ СТАЛЕЙ ПРИ ОСТАНОВЛЕННОМ КОТЛЕ Российский патент 2012 года по МПК G01N27/72 G01R33/12 G01K7/36 

Описание патента на изобретение RU2458339C1

Изобретение относится к области теплотехнических измерений и, в частности, для оценки температурного режима работы пароперегревательных котельных труб из аустенитных сталей.

Пароперегреватели котлов тепловых электростанций (ТЭС) работают в условиях неравномерного распределения расхода теплоносителя, неоднородного поля скорости и температуры дымовых газов. Неравномерное распределение расхода может быть следствием конструктивной нетождественности змеевиков пароперегревателя. Эти факторы вызывают тепловую неравномерность и неравномерное разупрочнение металла. На пароперегревательный тракт приходится 60…70% повреждений поверхностей нагрева. Основная причина повреждений - тепловая неравномерность (разверка). Задача контроля пароперегревателей состоит в выявлении змеевиков с наихудшим температурным режимом и минимальным остаточным ресурсом. Ранее было установлено, что остаточный ресурс побывавших в эксплуатации котельных труб из ферритовых сталей можно оценить по степени их намагниченности с помощью магнитометров. Было установлено также, что такая оценка остаточного ресурса возможна и для пароперегревательных труб из немагнитных в исходном состоянии аустенитных сталей вследствие образования на них в процессе эксплуатации измененного поверхностного слоя с магнитными свойствами (см. Магнитный способ диагностики аустенитных труб поверхностей нагрева паровых котлов. / Богачев В.А. и др. // Электрические станции. №8. 1994, с.11-13). Однако амплитуда сигнала магнитометра в этом случае оказалась на уровне чувствительности этого прибора, и использование его для данных целей не получило дальнейшего развития.

Из уровня техники известен выбранный в качестве прототипа изобретения магнитный ферритометр, содержащий датчик и вторичный прибор (RU 2150121, G01R 33/12, 2000). Недостаток данного ферритометра заключается в том, что его показания не дают непосредственного представления о величине эквивалентной температуры эксплуатации наружной поверхности пароперегревательных труб из аустенитных сталей. Представление об указанной температуре с его помощью можно получить только путем последующего математического пересчета полученных данных о количественном содержании ферритовой фазы (СФФ) в немагнитном металле.

Достигаемым техническим результатом изобретения является упрощение получения с помощью ферритометра результата измерения эквивалентной температуры эксплуатации наружной поверхности пароперегревательных труб из аустенитных сталей при остановленном котле.

Указанный технический результат изобретения обеспечивается тем, что в магнитном ферритометре, содержащем датчик и вторичный прибор с преобразователем сигнала датчика в сигнал, пропорциональный СФФ, и дисплей для отражения выходной информации, согласно изобретению вторичный прибор дополнительно содержит преобразователь сигнала, пропорционального СФФ, в сигнал, пропорциональный температуре, эквивалентной температуре наружной поверхности пароперегревательной трубы из аустенитной стали при работе котла, и задатчики параметров преобразования сигнала, пропорционального СФФ, в сигнал, пропорциональный указанной температуре, осуществляемого в соответствии с математическим выражением

где Тэкв - эквивалентная температура, кельвины;

СФФ - содержание ферритной фазы, мас.%;

τ - время эксплуатации котла, ч;

А=60…2100 и В=64000…152000 - константы, зависящие от конкретной марки аустенитной стали; С=0,08…0,10 кг/м3 - средняя концентрация кислорода в газоходе котла в интервале рабочих температур; R=8,314 Дж/(моль·К) - универсальная газовая постоянная.

Осуществление изобретения

На чертеже изображена принципиальная схема магнитного ферритометра согласно изобретению.

Магнитный ферритометр содержит корпус с наконечником (на чертеже не показаны), а также установленные внутри корпуса датчик 1 и вторичный прибор 2 с преобразователем 3 сигнала датчика 1 в сигнал, пропорциональный СФФ, и дисплей 4 для отражения выходной информации (эквивалентной температуры в К). Вторичный прибор 2 содержит, кроме преобразователя 3, включенный с ним последовательно преобразователь 5 сигнала, пропорционального СФФ, в сигнал, пропорциональный температуре, эквивалентной температуре наружной поверхности пароперегревательной трубы из аустенитной стали при работе котла, и задатчики 6-9 соответственно времени τ эксплуатации котла, константы А, константы В и средней концентрации С кислорода в газоходе котла в интервале рабочих температур.

Работа магнитного ферритометра согласно изобретению осуществляется следующим образом. Предварительно задатчики 6-9 устанавливаются в положения, соответствующие заданным параметрам А, В, С. После этого подносят наконечник ферритометра (на чертеже не показан) к контролируемой трубе из аустенитной стали. При этом сигнал от датчика 1, пройдя последовательно преобразователи 3 и 5, выводится на дисплей 4 в виде прямой цифровой информации об эквивалентной эксплуатационной температуре поверхности контролируемой трубы.

Результаты проверки опытного образца ферритометра согласно изобретению приведены ниже в таблице.

Котел 1 Аустенитная сталь марки 12Х18Н12Т № трубы τ, ч СФФ, мас.% Тг.раб, К (газов) С, кг/м3 А В Тэкв, К (металла) 12 26000 4,07 846 0,098 1758 132119 900 40 4,32 906 55 5,32 928 70 3,1 873 Котел 2 Аустенитная сталь марки 10Х13Г12ВС2Н2Д2 (ДИ59) 15 2600 3,5 973 0,084 69 74103 798 34 4,2 825 62 4,2 825 71 5,8 877

Как видно из таблицы, в первом котле температурная разверка пароперегревательных труб по данным измерений составляет приблизительно 4%, если не считать трубы №55, которая подлежит замене. Во втором котле температурная разверка находится на уровне приблизительно 10%. Данные контрольных измерений по показаниям термопар показали хорошую сходимость результатов (±1%).

Похожие патенты RU2458339C1

название год авторы номер документа
Прибор неразрушающего контроля пароперегревательных труб из аустенитной стали с определением их полного и остаточного ресурса 2017
  • Калугин Роман Николаевич
RU2690047C2
Способ определения жаростойкости аустенитных сталей 2016
  • Богачев Владимир Алексеевич
  • Крейцер Константин Константинович
  • Пшеченкова Татьяна Павловна
  • Урусова Галина Алексеевна
  • Шумовская Мария Александровна
RU2640317C1
ПАРОВОЙ КОТЕЛ С СЕКЦИОНИРОВАННЫМ ПАРОПЕРЕГРЕВАТЕЛЕМ ОСТРОГО ПАРА И АВТОМАТИЧЕСКАЯ СИСТЕМА ГАЗОВОГО РЕГУЛИРОВАНИЯ РАВНОМЕРНОСТИ НАГРЕВА ПАРА В СЕКЦИЯХ ТАКОГО ПАРОПЕРЕГРЕВАТЕЛЯ 2008
  • Афанасьев Борис Петрович
  • Тугов Андрей Николаевич
  • Шварц Анатолий Лазаревич
RU2376524C1
ПАРОВОЙ КОТЕЛ-УТИЛИЗАТОР С БЛОКОМ ДОЖИГАЮЩИХ УСТРОЙСТВ 2011
  • Верткин Михаил Аркадьевич
RU2486404C1
Ферритометр 1990
  • Бордюговский Андрей Анатольевич
  • Смелова Марина Евгеньевна
  • Рябова Марина Вадимовна
  • Баранков Михаил Лаврентьевич
  • Копылов Юрий Михайлович
  • Кныш Анатолий Иванович
SU1763967A1
ФЕРРИТОМЕТР 1999
  • Зарецкий Б.Ф.
  • Бобров В.А.
  • Химченко Н.В.
RU2150121C1
ПРИБОР КОНТРОЛЯ ФАЗОВОГО СОСТАВА СТАЛИ 2015
  • Каблов Евгений Николаевич
  • Бурхан Олег Леонидович
  • Качура Сергей Михайлович
  • Павлова Татьяна Дмитриевна
  • Кадосов Алексей Дмитриевич
  • Шитиков Владислав Сергеевич
RU2606519C2
Пароперегреватель 1984
  • Никитин Евгений Евгеньевич
  • Дашкиев Юрий Георгиевич
  • Барбышев Борис Николаевич
SU1377508A1
УСТРОЙСТВО ДЛЯ ЛОКАЛЬНОГО ИЗМЕРЕНИЯ ФЕРРОМАГНИТНОЙ ФАЗЫ АУСТЕНИТНЫХ СТАЛЕЙ 1997
  • Пудов В.И.
  • Ригмант М.Б.
  • Горкунов Э.С.
RU2130609C1
Способ изготовления образца для поверки электромагнитных приборов 1985
  • Косовский Давид Израильевич
SU1298634A1

Реферат патента 2012 года МАГНИТНЫЙ ФЕРРИТОМЕТР ДЛЯ ОПРЕДЕЛЕНИЯ ЭКВИВАЛЕНТНОЙ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ НАРУЖНОЙ ПОВЕРХНОСТИ ПАРОПЕРЕГРЕВАТЕЛЬНЫХ ТРУБ ИЗ АУСТЕНИТНЫХ СТАЛЕЙ ПРИ ОСТАНОВЛЕННОМ КОТЛЕ

Изобретение относится к области теплотехнических измерений и может быть использовано для оценки температурного режима работы пароперегревательных котельных труб из аустенитных сталей. Согласно заявленному изобретению вторичный прибор 2 ферритометра дополнительно к существующему преобразователю 3 содержит преобразователь 5 сигнала, пропорционального СФФ, в сигнал, пропорциональный температуре, искомой эквивалентной температуре. Ферритометр снабжен также задатчиками 6-9 параметров преобразования. Технический результат: повышение точности измерения эквивалентной температуры эксплуатации наружной поверхности пароперегревательных труб из аустенитных сталей при остановленном котле. 1 ил., 1 табл.

Формула изобретения RU 2 458 339 C1

Магнитный ферритометр, содержащий датчик и вторичный прибор с преобразователем сигнала датчика в сигнал, пропорциональный содержанию ферритной фазы, и дисплей для отражения выходной информации, отличающийся тем, что вторичный прибор дополнительно содержит преобразователь сигнала, пропорционального содержанию ферритной фазы, в сигнал, пропорциональный температуре, эквивалентной температуре наружной поверхности пароперегревательной трубы из аустенитной стали при работе котла, и задатчики параметров преобразования сигнала, пропорционального содержанию ферритной фазы, в сигнал, пропорциональный указанной температуре, осуществляемого в соответствии с математическим выражением
,
где Тэкв - эквивалентная температура, K;
СФФ - содержание ферритной фазы, мас.%;
τ - время эксплуатации котла, ч;
А=60…2100 и В=64000…152000 - константы, зависящие от конкретной марки аустенитной стали; С=0,08…0,10 кг/м3 - средняя концентрация кислорода в газоходе котла в интервале рабочих температур; R=8,314 Дж/(моль·К) - универсальная газовая постоянная.

Документы, цитированные в отчете о поиске Патент 2012 года RU2458339C1

Богачев В.А
и др
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1
- Электрические станции, №12, 2007, с.22-25
Нивелир для отсчетов без перемещения наблюдателя при нивелировании из средины 1921
  • Орлов П.М.
SU34A1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
Найдено в Интернете:

RU 2 458 339 C1

Авторы

Богачев Владимир Алексеевич

Пшеченкова Татьяна Павловна

Школьникова Бальбина Эммануиловна

Даты

2012-08-10Публикация

2011-03-14Подача