ГЕНЕРАТОР ОЗОНА Российский патент 2012 года по МПК C01B13/11 

Описание патента на изобретение RU2458855C1

Изобретение относится к области производства озона из кислорода или воздуха и может быть использовано в медицине для очистки воды и обработки помещений.

Известно устройство разрядной камеры [патент РФ №2057059, МКИ C01B 12/11, опубл. 27.031996 г.], в которой диэлектрическим барьером является керамика на основе глинозема Аl2O3 с добавлением оксида марганца МnО.

Известен также генератор озона, состоящий из двух разрядных камер [патент РФ №2127220, МКИ C01B 13/11, опубл. 10.03.1999 г.], соединенных последовательно с переменным зазором разрядного промежутка. Диэлектриком является керамика с диэлектрической проницаемостью ε=8.

Общим недостатком вышеперечисленных аналогов является сложность конструкций и малая управляемость свойствами барьерной керамики в процессе электросинтеза озона.

Наиболее близким по технической сущности и достигаемому результату является генератор озона, содержащий разрядную камеру в виде прямоугольного параллелепипеда, внутри которой стопкой уложены плоские электроды и диэлектрические пластины для электрического барьера, имеется входная и выходная плоскости, воздушный разрядный промежуток образован между двумя диэлектрическими пластинами из керамики, примыкающих вплотную к металлическим электродам [патент, Россия №2206496, МКИ C01B 13/11, опубл. 20.06.2003 г., (прототип)].

Недостатком прототипа является жесткая привязанность электрических параметров барьерной керамики к источнику питания, что мешает добиться оптимального режима разряда в камере, вследствие чего возникают локальные перегревы в диэлектрическом слое и неравномерное распределение микроразрядов, которые приводят к эрозии и разрушению пластины, а также малое значение величины диэлектрической постоянной керамики.

Техническим результатом изобретения является повышение производительности, надежности и стабильности работы генератора озона.

Технический результат достигается тем, что в генераторе озона, содержащем разрядную камеру в виде прямоугольного параллелепипеда, внутри которой стопкой уложены плоские электроды и диэлектрические пластины для электрического барьера, имеется входная и выходная полости, электроды в виде прямоугольных металлических пластин уложены так, что нечетные пластины примыкают вплотную к одной боковой стороне камеры, а четные - к другой стороне камеры, а сами стороны являются общими шинами высокого и низкого напряжения соответственно, новым является то, что диэлектрические пластины изготовлены из сегнетокерамики BaТiO3-BaZrO3.

Таким образом, в заявляемом генераторе озона в качестве диэлектрических пластин используют сегнетокерамику с высоким значением диэлектрической постоянной, при этом сегнетокерамика изготовлена на основе твердого раствора BaTiO3-BaZrO3. Признаки, отличающие заявленное изобретение от прототипа, обеспечивают ему соответствие критерию «новизна».

Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данных и смежных областей техники и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Изобретение поясняется чертежами.

На фиг.1 представлена разрядная камера. На фиг.2 представлена ячейка с разрядным воздушным промежутком 8 между электродом 2 и диэлектрической пластиной 3 из сегнетокерамики.

Генератор озона содержит разрядную камеру 1 в виде прямоугольного параллелепипеда (фиг.1), внутри которой стопкой уложены плоские прямоугольные электроды 2, диэлектрические пластины из сегнетокерамики 3, служащие электрическими барьерами, имеется входная полость 4, выходная полость 5, входной патрубок 6, выходной патрубок 7 и разрядные промежутки 8. Электроды уложены так, что нечетные пластины примыкают вплотную к одной боковой стороне камеры, а четные - к другой, а сами боковые стороны являются общими шинами высокого и низкого напряжения, соответственно. Электроды и диэлектрические пластины разделяются дистанционными прокладками из диэлектрика (на фиг.1 - они не показаны).

Газовый поток через входной патрубок 6 (фиг.1) подается в полость 4. Газоозоновая смесь из разрядных промежутков 8 поступает в выходную полость 5, объем которой больше входной полости. Происходит расширение газа, и температура смеси понижается за счет адиабатических процессов. В разрядной камере осуществляется синтез озона в электрических разрядах из кислорода или из кислородосодержащих смесей газов [Ю.В.Филиппов, В.А.Вобликова, В.И.Пантелеев, «Электросинтез озона», Изд-во Московского университета, 1987].

Группу реакций, приводящих к синтезу озона, можно представить:

О2+q-О3+O+q

О+O2+М-О3

где q - частица высокой энергии, например фотон, электрон, возбужденный атом, молекула озона, примеси и т.д.;

М - любая частица, например атом или молекула кислорода, молекула озона, атом или молекула примеси.

Для сегнетокерамики, в отличие от керамики, характерна спонтанная поляризованность в определенном интервале температур, нелинейная зависимость относительной диэлектрической проницаемости ε и тангенса потерь tgδ от температуры, частоты и напряженности электрического поля, высокая диэлектрическая проницаемость [И.С.Рез, Ю.М.Поплавко «Диэлектрики. Основные свойства и применение в электронике», М., Радио и связь, 1989, 185-191 с.].

При помещении сегнетокерамики в электрическое поле поляризация увеличивается и наблюдается рост относительной диэлектрической проницаемости. В области резкого роста поляризации диэлектрическая проницаемость сегнетокерамики максимальна. Существенное влияние на поведение сегнетокерамики в электрическом поле оказывает температура. При достижении некоторой температуры сегнетокерамики переходят в параэлектрическое состояние. Эту температуру называют температурой Кюри. С увеличением температуры величина относительной диэлектрической проницаемости увеличивается и в точке Кюри принимает максимальное значение.

Диэлектрический слой (барьер) играет важную роль в процессе электросинтеза, и его параметры определяют стабильность работы разрядной камеры. Для этого рассмотрим отдельно поведение диэлектрического барьера из сегнетокерамики в одном разрядном промежутке (фиг.2). Это необходимо для дальнейшего описания изобретения.

По существу, - это электрический прибор, имеющий два соединенных последовательно конденсатора с различными диэлектриками: разрядного воздушного промежутка с диэлектрической проницаемостью ε1 и сегнетокерамики с диэлектрической проницаемостью ε2. Пусть параметры на фиг.1 имеют значения: ε1=1, ε2=500, h=1 мм, х=1 мм, U=1000 В,

тогда напряженность электрического поля в воздушном зазоре

Напряженность электрического поля в сегнетокерамике

Напряженность электрического поля в разрядном воздушном промежутке E1≈106 В/м и по величине близко к пробойному напряжению воздуха, равного Епр≈3·106 В/м.

Чтобы оценить минимальный зазор x, обратимся к формуле (1). Пренебрегая произведением hε1 и заменяя E1 на Епр, получим критический размер воздушного разрядного зазора

Так как диэлектрическая проницаемость сегнетокерамики зависит от напряженности электрического поля, то можно выбрать напряжение U на электродах, и значение диэлектрической проницаемости сегнетокерамики будет определяться этим электрическим полем. Например, выбрать температурный интервал, в котором будет изменяться диэлектрическая проницаемость сегнетокерамики ε2. Здесь есть возможность управлять приложенным напряжением U и выбирать оптимальный и экономный режим работы разрядной камеры.

Представим теперь, что в процессе работы разрядной камеры диэлектрический барьер из сегнетокерамики испытывает неравномерный нагрев диэлектрической пластины, в результате чего в местах нагрева диэлектрическая проницаемость увеличивается, а напряженность электрического поля в сегнетокерамике уменьшается. Срабатывает обратная связь, и система возвращается в исходное состояние. Это следует из формулы (2), т.е., если ε2 растет от температуры, то Е2 уменьшается, а напряженность электрического поля E1 не меняется. Другими словами, диэлектрический барьер из сегнетокерамики в разрядной камере автоматически поддерживает себя в оптимальном температурном интервале. В генераторе озона получается устойчиво-однородный равномерно-распределенный разряд. Любое нарушение этой однородности (краевые эффекты, локальные микроразряды и т.д.) за счет нелинейных параметров сегнетокерамики можно устранить. Сегнетокерамика состава BaTiO3-BaZrO3 образует непрерывный ряд твердых растворов [под редакцией Ю.В.Корицкого, В.В.Пасынкова, Б.М.Тареева «Справочник по электротехническим материалам», том 3, Ленинград, Энергоатомиздат, 1988, 550-579 с.] с различными электрическими свойствами в зависимости от содержания второго компонента. Технология изготовления сегнетокрамики дается в справочнике [под редакцией Ю.В.Корицкого, В.В.Пасынкова, Б.М.Тареева «Справочник по электротехническим материалам», том 2, Москва, Энергоатомиздат, 1987, 217-224 с.]. Пример: сегнетокерамика состава ВаTiO3-BaZrO3 с содержанием второго компонента 5% при комнатной температуре имеет диэлекрическую проницаемость, равную 500, а при температуре 100°C диэлектрическая проницаемость принимает значение 7500, при этом напряженность электрического поля Е2 по формуле 2 уменьшится на порядок.

Заявленное изобретение при применении в генераторах озона сегнетокерамики в качестве диэлектрического барьера позволит повысить надежность и стабильность работы разрядной камеры, а также выбрать экономичный режим путем введения обратных связей, исходя из функциональных параметров диэлектрического барьера из сегнетокерамики.

Похожие патенты RU2458855C1

название год авторы номер документа
ГЕНЕРАТОР ОЗОНА 2002
  • Четвергов Н.А.
RU2206496C1
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОСИНТЕЗА ОЗОНА 1999
  • Азриель А.И.
  • Ерофеев А.А.
  • Попов Н.М.
  • Пугачев С.И.
  • Семенова Н.Г.
  • Сун Тэ Ан
RU2174095C2
АНТЕННА ВЫТЕКАЮЩЕЙ ВОЛНЫ 2013
  • Габриэльян Дмитрий Давидович
  • Илатовский Александр Алексеевич
  • Корсун Роман Николаевич
  • Мусинов Вадим Михайлович
  • Федоров Денис Сергеевич
  • Шацкий Виталий Валентинович
RU2553059C1
СПОСОБ ГЕНЕРИРОВАНИЯ ОЗОНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Бойко Николай Иванович
RU2211800C2
УСТРОЙСТВО ДЛЯ ГЕНЕРИРОВАНИЯ ОЗОНА 2007
  • Пичугин Юрий Петрович
  • Кравченко Галина Алексеевна
RU2355627C9
ОЗОНАТОР 2003
  • Силкин Е.М.
RU2261837C2
ОЗОНАТОР-ВЕНТИЛЯТОР С КОМБИНИРОВАННЫМ ГАЗОВЫМ РАЗРЯДОМ 2009
  • Журавлев Олег Анатольевич
  • Ивченко Алексей Викторович
  • Стрельников Александр Юрьевич
RU2418740C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОВОРОТА ПЛОСКОСТИ ПОЛЯРИЗАЦИИ УЛЬТРАЗВУКОВОЙ ВОЛНЫ 1994
  • Семченко Игорь Валентинович
  • Сердюков Анатолий Николаевич
  • Хахомов Сергей Анатольевич
RU2123895C1
ОЗОНАТОР 2008
  • Пахомов Виктор Иванович
  • Максименко Владимир Андреевич
  • Пахомов Александр Иванович
  • Буханцов Кирилл Николаевич
RU2394756C1
ГЕНЕРАТОР ОЗОНА 1997
  • Уразбахтина Н.Г.
  • Стыскин А.В.
  • Абдуллин И.Р.
RU2120402C1

Иллюстрации к изобретению RU 2 458 855 C1

Реферат патента 2012 года ГЕНЕРАТОР ОЗОНА

Изобретение относится к производству озона и может быть использован для очистки воды и обработки помещений в медицине. Генератор озона содержит разрядную камеру в виде прямоугольного параллелепипеда, внутри которой стопкой уложены плоские электроды и диэлектрические барьеры, имеется входная и выходная полости. Прямоугольные металлические электроды уложены так, что нечетные пластины примыкают к одной стороне камеры, а четные - к другой стороне, а сами стороны являются общими шинами высокого и низкого напряжения. В разрядном промежутке диэлектрический барьер примыкает вплотную к одному из электродов. В качестве диэлектрического барьера используется сегнетокерамика BaTiO3-BaZrO3. изобретение позволяет повысить производительность, надежность и стабильность работы генератора озона. 2 ил.

Формула изобретения RU 2 458 855 C1

Генератор озона, содержащий разрядную камеру в виде прямоугольного параллелепипеда, внутри которой стопкой уложены плоские электроды и диэлектрические пластины для электрического барьера, имеется входная и выходная полости, электроды в виде прямоугольных металлических пластин уложены так, что нечетные пластины примыкают вплотную к одной боковой стороне камеры, а четные - к другой стороне камеры, а сами стороны являются общими шинами высокого и низкого напряжения соответственно, отличающийся тем, что диэлектрические пластины изготовлены из сегнетокерамики BaTiO3-BaZrO3.

Документы, цитированные в отчете о поиске Патент 2012 года RU2458855C1

ГЕНЕРАТОР ОЗОНА 2002
  • Четвергов Н.А.
RU2206496C1
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОСИНТЕЗА ОЗОНА 1999
  • Азриель А.И.
  • Ерофеев А.А.
  • Попов Н.М.
  • Пугачев С.И.
  • Семенова Н.Г.
  • Сун Тэ Ан
RU2174095C2
Нелинейный сегнетокерамический материал 1975
  • Вербицкая Татьяна Николаевна
  • Клейне Рита Зигфридовна
  • Фрейденфельд Эдгар Жанович
  • Кутузова Тамара Константиновна
  • Широбокова Евгения Ивановна
SU545618A1
WO 2001007360 A1, 01.02.2001
МЕБЕЛЬНЫЙ ЗАПОР 2007
  • Хакеманн Фритц
RU2424410C2
EP 1314692 A1, 28.05.2003.

RU 2 458 855 C1

Авторы

Четвергов Николай Антонович

Токарев Николай Андреевич

Турчин Павел Петрович

Мисюль Сергей Валентинович

Даты

2012-08-20Публикация

2011-04-13Подача