ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ Российский патент 2012 года по МПК G01L9/04 H01L29/84 

Описание патента на изобретение RU2464539C1

Изобретение относится к области измерительной техники, в частности к преобразователям малых давлений высокотемпературных сред, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей давления, работоспособных при повышенных температурах.

Известен преобразователь давления и способ его изготовления, характеризующиеся тем, что мембрана со слоем диэлектрика, на которой сформированы тензорезисторы, легирована бором до того же уровня концентрации, что и тензорезисторы, при этом толщина мембраны под слоем диэлектрика равна толщине тензорезисторов [1].

Недостатками данного преобразователя являются низкая чувствительность к измерению малых давлений при сохранении собственной резонансной частоты, низкая прочность мембраны, высокий уровень погрешностей измерений в интервале температур от минус 100 до 800°C, низкая долговременная стабильность параметров преобразователя.

Наиболее близким по технической сущности к изобретению является преобразователь давления и способ его изготовления, содержащий мембрану с утолщенным периферийным основанием, выполненную из кремния и легированную бором до концентрации не менее 5·1019 см-3, имеющую толщину, равную толщине тензорезисторов, сформированных на закрепленном на мембране слое диэлектрика, выполненных из кремния, легированного бором до того же уровня концентрации, что и мембрана, объединенных с помощью проводников в мостовую измерительную схему и имеющих соединенные с ними металлизированные контактные площадки, причем мостовая измерительная схема содержит терморезистор, выполненный из кремния, а мембрана содержит профиль с концентраторами механических напряжений в местах расположения тензорезисторов, который представляет собой сочетание утонченных участков и жестких центров, при этом поверхности тензорезисторов и терморезистора покрыты слоем двуокиси кремния [2].

Недостатками прототипа являются невозможность измерений высокотемпературных сред, обусловленная низкой упругостью и высокой подвижностью дефектов в кристаллической решетке кремния при температурах свыше 500°C, а также низкая долговременная стабильность параметров преобразователя, обусловленная долговременным дрейфом характеристик, привносимым высоколегированными участками преобразователя.

Невозможность измерений высокотемпературных сред (более 500°C) объясняется тем, что кремний, из которого выполнена мембрана, не демонстрирует ни пластической деформации, ни ползучести при температурах до 500°C, но при более высоких температурах в данном материале наблюдается значительное снижение упругости и увеличение подвижности дефектов в кристаллической решетке, что в конечном итоге приводит к разрушению структур, выполненных из кремния [3]. А низкая долговременная стабильность параметров преобразователя обусловливается наличием высоколегированного (концентрация носителей не менее 5·1019 см-3) полупроводникового материала тензорезисторов и мембраны. В полупроводниковых преобразователях давления основным компонентом, привносящим долговременный дрейф характеристик, а значит являющимся причиной низкой долговременной стабильности параметров, являются легированные участки преобразователей, в качестве которых могут выступать тензорезисторы и тонкие мембраны, созданные методами диффузии и ионной имплантации. Во внутренней структуре таких участков существует большое количество дефектов, являющихся причиной деградации характеристик полупроводника, а значит и преобразователя в целом, из-за наличия объемной диффузии в условиях и режимах эксплуатации полупроводниковых преобразователях давления. Практика показала, что отказы одних и тех же полупроводниковых преобразователях давления, обусловленные процессами объемной диффузии, проявляются как в ранние периоды времени, так и по истечении десятка тысяч часов эксплуатации [4]. Причем в одном и том же полупроводниковом преобразователе давления часть однотипных элементов конструкции подвержена отказам из-за объемной диффузии, в то время как у остальных элементов могут не проявляться деградационные процессы. Это свидетельствует о том, что для начала развития деградационных изменений в элементах полупроводниковых преобразователей давления, связанных с объемной диффузией, необходимо наличие ускоряющих факторов, связанных как с внутренним состоянием структуры, так и с внешними воздействиями. Теоретически можно предположить, что с течением времени будет наблюдаться деградация параметров, обусловленная расплыванием концентрационных профилей за счет диффузии. Согласно современным представлениям основным ускоряющим фактором для объемной диффузии выступает повышенная температура эксплуатации полупроводниковых преобразователей давления, когда значительно возрастает подвижность дефектов. Кроме того, в качестве таких факторов могут выступать: коллективные и локальные дефекты структуры, дислокации, дислокационные сетки, дефекты упаковки, присутствие примесей, электрические и объемные силы, обусловленные механическими деформациями. Наибольшее влияние на долговечность полупроводниковых преобразователей давления оказывают дефекты упаковки и дислокации в связи с их большой протяженностью и способностью двигаться и размножаться, а также порождать новые дефекты. Образовавшиеся дислокации служат источниками ускоренной диффузии примеси в нормальных условиях работы полупроводниковых преобразователей давления [4, 5]. Внутренние дислокации возникают при диффузии легирующих элементов, например, таких как фосфор и бор, из источников с высокой концентрацией примесей. Так, при локальной диффузии бора сетки дислокаций образуются при Nпов≥(2…3)·1019 см-2, тогда как при сплошной диффузии - при Nпов≥1·1020 см-2, а плотность дислокаций в диффузионных окнах примерно на порядок превышает плотность дислокаций при сплошной диффузии [6].

Изобретение направлено на расширение температурного диапазона измерений и повышение долговременной стабильности параметров преобразователя.

Согласно изобретению в полупроводниковом преобразователе давления, содержащем мембрану с утолщенным периферийным основанием, имеющую толщину, равную толщине тензорезисторов, сформированных на закрепленном на мембране слое диэлектрика, объединенных с помощью проводников в мостовую измерительную схему, имеющих соединенные с ними металлизированные контактные площадки, и содержащую профиль с концентраторами механических напряжений в местах расположения тензорезисторов, который представляет собой сочетание утонченных участков и жестких центров, мембрана и тензорезисторы выполнены из нелегированного карбида кремния с концентрацией носителей не более 1016 см-3.

Введение предложенной конструкции, содержащей карбид кремния, позволяет расширить температурный диапазон измерений в части повышения верхнего предела измерений до 800°C за счет использования полупроводникового широкозонного материала карбида кремния, обладающего рядом уникальных свойств, в том числе стойкостью к воздействию повышенной температуры. Например, из выражения для максимального обратного напряжения p-n-перехода Uмакс следует, что применение широкозонных полупроводников позволяет увеличить рабочее напряжение на 1,5-2 порядка при неизменной степени легирования:

где ЕС - напряженность поля пробоя;

qe - заряд электрона;

Nд - концентрация доноров.

Кроме того, большая, по сравнению с кремнием, ширина запрещенной зоны означает больший диапазон рабочих температур (теоретически до ~1000°C) [7, 8]. Еще одно преимущество SiC - высокая температура Дебая, определяющая температуру, при которой возникают упругие колебания кристаллической решетки (фононы) с максимальной для данного материала частотой. Температуру Дебая можно рассматривать как параметр, характеризующий термическую стабильность полупроводника. При превышении этой температуры колебания могут стать неупругими и привести к разрушению материала. Наконец, электронные свойства приборов на основе карбида кремния очень стабильны во времени и слабо зависят от температуры, что обеспечивает высокую надежность изделий [7, 8].

А введение предложенной конструкции, содержащей мембрану и тензорезисторы, выполненные из нелегированного карбида кремния с концентрацией носителей не более 1016 см-3, позволяет повысить долговременную стабильность параметров преобразователя за счет полного исключения легированных участков в конструкции преобразователя, которые, как показано выше, являются основным компонентом, привносящим долговременный дрейф характеристик, а значит являющиеся причиной низкой долговременной стабильности параметров [4, 5, 6].

Предлагаемое устройство поясняется чертежом.

На фиг.1 изображен полупроводниковый преобразователь давления, содержащий мембрану (1) с утолщенным периферийным основанием (2). Мембрана имеет толщину, равную толщине тензорезисторов (3), сформированных на закрепленном на мембране слое диэлектрика (4). Тензорезисторы объединены с помощью проводников (5), имеющих соединенные с ними металлизированные контактные площадки (6), в мостовую измерительную схему. Мембрана содержит профиль с концентраторами механических напряжений (7) в местах расположения тензорезисторов, который представляет собой сочетание утонченных участков и жестких центров. Мембрана и тензорезисторы выполнены из нелегированного карбида кремния с концентрацией носителей не более 1016 см-3.

Принцип работы преобразователя заключается в следующем.

Измеряемое давление, воздействуя на мембрану с жестким центром, деформирует тензорезисторы и увеличивает разбаланс мостовой схемы, в которую замкнуты тензорезисторы. Выбор в качестве материала мембраны и тензорезисторов карбида кремния позволяет расширить температурный диапазон измерений в части повышения верхнего предела измерений до 800°C за счет использования полупроводникового широкозонного материала карбида кремния, обладающего рядом уникальных свойств, в том числе стойкостью к воздействию повышенной температуры. А использование нелегированного карбида кремния с концентрацией носителей не более 1016 см-3 позволяет повысить долговременную стабильность параметров преобразователя за счет полного исключения легированных участков в конструкции преобразователя, которые, как показано выше, являются основным компонентом, привносящим долговременный дрейф характеристик, а значит являющиеся причиной низкой долговременной стабильности параметров.

Технико-экономическими преимуществами предлагаемого преобразователя по сравнению с известными являются:

- расширение температурного диапазона измерений;

- повышение долговременной стабильности параметров преобразователя.

Источники информации

1. Патент RU 1732199.

2. Патент RU 2284613.

3. Гридчин В.А. Физика микросистем: учеб. пособие; в 2 ч. Ч.1 / В.А.Гридчин, В.П.Драгунов - Новосибирск: Изд-во НГТУ, 2004. - 416 с.

4. М.И.Горлов, В.А.Емельянов, А.В.Строгонов. Геронтология кремниевых интегральных схем. М.: Наука, 2004. - 240 с.

5. Повышение долговременной стабильности высокотемпературных полупроводниковых датчиков давлений / Баринов И.Н., Волков B.C. // Приборы. - 2010. - №3. - С.9-15.

6. Концевой Ю.А., Филатов Д.К. Дефекты кремниевых структур и приборов. Часть 2. Основные технологические операции // Электронная техника. Справочные материалы, 1987.

7. Лебедев А, Сбруев С. SiC-электроника. Прошлое, настоящее, будущее // Электроника: Наука, Технология, Бизнес. - 2006. - №5. - С.28-41.

8. Васильев А., Лучинин В., Мальцев П. Микросистемная техника. Материалы, технологии, элементная база // Электронные компоненты. - 2000. - №4. - С.3-11.

Похожие патенты RU2464539C1

название год авторы номер документа
ВЫСОКОТЕМПЕРАТУРНЫЙ ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ 2012
  • Волков Вадим Сергеевич
  • Баринов Илья Николаевич
RU2507491C1
ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ 2006
  • Баринов Илья Николаевич
  • Козин Сергей Алексеевич
  • Цибизов Павел Николаевич
RU2310176C1
ВЫСОКОТЕМПЕРАТУРНЫЙ ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ 2013
  • Волков Вадим Сергеевич
  • Баринов Илья Николаевич
RU2526788C1
ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2005
  • Баринов Илья Николаевич
  • Козин Сергей Алексеевич
RU2284613C1
ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ 2014
  • Баринов Илья Николаевич
  • Волков Вадим Сергеевич
  • Гурин Сергей Александрович
  • Тареева Юлия Александровна
  • Евдокимов Сергей Павлович
RU2555190C1
ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ 2004
  • Баринов Илья Николаевич
  • Козин Сергей Алексеевич
RU2271523C2
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ПРЕОБРАЗОВАТЕЛЯ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ 2015
  • Харин Денис Александрович
  • Разинов Дмитрий Вячеславович
RU2606550C1
ТЕНЗОРЕЗИСТОРНЫЙ ДАТЧИК АБСОЛЮТНОГО ДАВЛЕНИЯ НА ОСНОВЕ КНИ МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ 2015
  • Соколов Леонид Владимирович
RU2609223C1
ТЕНЗОПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ 2002
  • Гридчин В.А.
  • Грищенко В.В.
  • Любимский В.М.
  • Шапорин А.В.
RU2243517C2
ТЕНЗОПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ 2005
  • Клитеник Олег Вадимович
  • Первушина Татьяна Федоровна
RU2293955C1

Реферат патента 2012 года ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ

Изобретение относится к области измерительной техники, в частности к преобразователям малых давлений высокотемпературных сред, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей давления, работоспособных при повышенных температурах. Сущность: полупроводниковый преобразователь давления содержит мембрану (1) с утолщенным периферийным основанием (2). Мембрана имеет толщину, равную толщине тензорезисторов (3), сформированных на закрепленном на мембране слое диэлектрика (4). Тензорезисторы объединены с помощью проводников (5), имеющих соединенные с ними металлизированные контактные площадки (6), в мостовую измерительную схему. Мембрана содержит профиль с концентраторами механических напряжений (7) в местах расположения тензорезисторов, который представляет собой сочетание утонченных участков и жестких центров. Мембрана и тензорезисторы выполнены из нелегированного карбида кремния с концентрацией носителей не более 1016 см-3. Технический результат: расширение температурного диапазона измерений, повышение долговременной стабильности параметров преобразователя. 1 ил.

Формула изобретения RU 2 464 539 C1

Полупроводниковый преобразователь давления, содержащий мембрану с утолщенным периферийным основанием, имеющую толщину, равную толщине тензорезисторов, сформированных на закрепленном на мембране слое диэлектрика, объединенных с помощью проводников в мостовую измерительную схему, имеющих соединенные с ними металлизированные контактные площадки, и содержащую профиль с концентраторами механических напряжений в местах расположения тензорезисторов, который представляет собой сочетание утонченных участков и жестких центров, отличающийся тем, что в нем мембрана и тензорезисторы выполнены из нелегированного карбида кремния с концентрацией носителей не более 1016 см-3.

Документы, цитированные в отчете о поиске Патент 2012 года RU2464539C1

ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2005
  • Баринов Илья Николаевич
  • Козин Сергей Алексеевич
RU2284613C1
ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ 2006
  • Баринов Илья Николаевич
  • Козин Сергей Алексеевич
  • Цибизов Павел Николаевич
RU2310176C1
ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ 2004
  • Баринов Илья Николаевич
  • Козин Сергей Алексеевич
RU2271523C2
ИНТЕГРАЛЬНЫЙ ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1990
  • Евдокимов В.И.
  • Папков В.С.
  • Смыслов И.И.
  • Суровиков М.В.
SU1835913A1
US 20050034529 A1, 17.02.2005
US 20070000330 A1, 04.01.2007
US 7952154 B2, 31.05.2011.

RU 2 464 539 C1

Авторы

Баринов Илья Николаевич

Даты

2012-10-20Публикация

2011-07-08Подача