СПОСОБ ЭЛЕКТРОМАГНИТНОГО КОНТРОЛЯ МЕХАНИЧЕСКОЙ ПРОЧНОСТИ МУФТОВЫХ СОЕДИНЕНИЙ ТРУБ В СКВАЖИНАХ Российский патент 2012 года по МПК G01N27/00 

Описание патента на изобретение RU2465574C1

Изобретение относится к контрольно-измерительной технике и может быть использовано для контроля магнитной проницаемости и электропроводности изделий из ферромагнитных материалов, например муфтовые соединения труб в скважинах недоступные для непосредственного контроля.

Известен способ контроля физико-механических параметров изделий из ферромагнитных материалов (а.с. Способ контроля физико-механических параметров, SU 1259174, 23.09.86. Бюл. №35).

На фиг.1 представлена блок-схема устройства, реализующего способ с частотным методом выделения сигнала.

Устройство содержит генератор 1 с изменяемой частотой, соединенные последовательно параметрический индуктивный преобразователь 2, ключ 3 и эталонный резистор 4, подключенные к выходу генератора 1 с изменяемой частотой, соединенные последовательно амплитудный детектор 5, подключенный к эталонному резистору 4, и индикатор 6. Устройство содержит также конденсатор 7, подключенный параллельно индуктивному преобразователю 2 и ключу 3, и блок 8 измерений частоты, подключенный к генератору 1 с изменяемой частотой.

Для цепи из параллельно соединенных индуктивного преобразователя и компенсирующего конденсатора, подключенной к источнику переменного напряжения, удаление из цепи индуктивного преобразователя не изменяет амплитуды тока в неразветвленной части цепи, когда ХС=2XL. Это видно из уравнения тока такой цепи

где - эквивалентная проводимость разветвления цепи;

- реактивная проводимость компенсирующего конденсатора;

g·, bL - соответственно активная и реактивная проводимости индуктивного преобразователя. Из равенства получают XC=2XL.

Способ осуществляют следующим образом. В переменное магнитное поле индуктивного преобразователя помещают контролируемое изделие (не показано). Изменением частоты питающего генератора 1 при неизменном на его выходе напряжении и постоянной величине емкости компенсирующего конденсатора 7 добиваются такого состояния, когда при работающем ключе 3 прекратятся колебания стрелки индикатора 6. В этот момент прекращают изменять частоту генератора 1 и при помощи блока 8 измерения частоты измеряют рабочую частоту генератора 1. Компенсация удвоенной величины реактивной составляющей полного сопротивления индуктивного преобразователя позволяет повысить надежность и стабильность измерений за счет того, что рабочая частота генератора , определяемая из условия XC=2XL, не зависит от активного сопротивления индуктивного преобразователя, поэтому влияние внешних условий, таких как изменение температуры, сказывается в меньшей степени. Это является существенным достоинством.

Недостатками этого способа контроля физико-мезанических параметров изделий из ферромагнитных материалов являются недостаточная чувствительность к их незначительным изменениям, его невозможно применить в тех случаях контроля физико-механических параметров изделий, когда необходимо сравнение с исправными изделиями, а неисправные изделия недоступны для непосредственной оценки их состояния.

Наиболее близкий по своей сути способ электромагнитного контроля физико-механических параметров изделий из ферромагнитных электропроводящих материалов, принятый за прототип, путем сравнения полных сопротивлений индуктивных преобразователей, включенных в дифференциальную схему с двумя последовательными резонансными контурами (Неразрушающий контроль металлов и изделий. Справочник. Под ред. Г.С.Самойловича. М., «Машиностроение», 1986, рис.78, стр.269). Резонансные контуры настроены на резонанс напряжения, который возникает при равенстве реактивных сопротивлений индуктивной катушки XL и конденсатора ХС т.е. XLС. Использование последовательной резонансной электрической цепи при измерениях электропроводности, толщины листов стенки труб позволяет уменьшить влияние изменения зазора между индуктивной катушкой и изделием в пределах до 0,2 мм. Однако влияние температуры на результаты измерений исключить нельзя. Это является недостатком способа прототипа.

Задача предлагаемого изобретения - расширение возможностей применения способа электромагнитного контроля физико-механических параметров изделий из ферромагнитных материалов для оценки механической прочности муфтовых соединений труб в скважинах (фиг.2. Схема участка муфтового соединения труб в скважинах). На схеме обозначено: 10 - обсадная труба скважины, 12 - труба, например, насоса скважины, 11 - муфта резьбового соединения труб, 2 - индуктивный преобразователь.

Технический результат достигается тем, что электрическая схема, показанная на фиг.3, с помощью которой реализуется способ, содержит: генератор с изменяемой частотой переменного тока 1, к выводам которого подключена дифференциальная схема с двумя последовательными резонансными колебательными контурами. Первый колебательный контур содержит последовательно соединенные амперметр переменного тока 13, конденсатор с переменной величиной емкости 7, который может отключаться и включаться с помощью ключа 3, и индуктивный преобразователь 2. Второй колебательный контур содержит последовательно соединенные амперметр переменного тока 13, конденсатор с переменной величиной емкости 7 и индуктивные преобразователи 2. Вывод генератора 1, к которому подключены выходы индуктивных преобразователей 2, образует электрическую шину (общий проводник, к которому подключаются другие электрические элементы).

Разностный сигнал переменного тока от входов индуктивных преобразователей 2 преобразуется в сигнал постоянного тока с помощью двух полупроводниковых детекторов диодов 14 и двух электрических RC-фильтров, состоящих из конденсаторов 15, и резисторов 16, имеющих потенциометрические выводы. К потенциометрическим выводам резисторов 16 подключен вольтметр постоянного тока 17.

Первый последовательный резонансный контур настраивается на резонансное явление, возникающее при условии равенства величины реактивного сопротивления конденсатора 7 удвоенной величине реактивного сопротивления индуктивного преобразователя 2. Это явление достигается следующим образом. Для цепи из последовательно соединенных конденсатора и индуктивного преобразователя, подключенной к источнику переменного напряжения, короткое замыкание пластин конденсатора не приводит к изменению амплитуды тока в индуктивном преобразователе, когда величина удвоенного реактивного сопротивления индуктивного преобразователя XL равна величине реактивного сопротивления конденсатора XC. Это видно из уравнения тока в преобразователе при включенном в цепь и выключенном из цепи конденсаторе при условии XC=2XL

где Rд - активное сопротивление преобразователя (датчика).

При невыполнении условия XC=2XL уменьшается величина тока индуктивного преобразователя.

Второй последовательный резонансный контур настраивается на явление резонанса напряжений. Оно возникает при условии равенства величины реактивного сопротивления конденсатора 7 величине реактивного сопротивления индуктивного преобразователя 3, т.е. XC=XL. При этом величина переменного тока в этом резонансном контуре по показаниям амперметра 13 будет наибольшей.

Частота переменного тока генератора при электромагнитном контроле и оценке механической прочности резьбового соединения труб в скважинах с помощью муфт, фиг.2, устанавливается такой, при которой глубина распределения вихревых токов возникающих в электропроводящем материале, была бы не более суммы толщины стенки трубы и половины толщины стенки муфты. Расчет распределения вихревых токов по глубине h электропроводящего материала производится по формуле (Неразрушающий контроль металлов и изделий. Справочник. Под ред. Г.С.Самойловича. М., «Машиностроение», 1986, стр.208)

h=1/√πfσµ,

где π -число 3,14; f - частота переменного тока;

σ - электрическая проводимость; µ - магнитная проницаемость.

Измерения по прилагаемому способу осуществляется следующим образом. В электромагнитное поле первого и второго индуктивных преобразователей размешают в доступном для контроля образце с заведомо исправным резьбовым соединением трубы скважины с помощью муфты (фиг.2).

Изменяют величину емкости конденсатора 7 первого резонансного контура и при работающем ключе 3 добиваются отсутствия колебания стрелки амперметра 13. Так создают условие равенства XC=2XL, при котором работает первый резонансный контур. Ключ 3 оставляют в разомкнутом состоянии (фиг.3).

Изменяют величину емкости конденсатора 7 второго резонансного контура и добиваются максимального познания амперметра 13. Это одно из условий возникновения резонанса напряжений во втором резонансном контуре, когда XL=XС, (фиг.3).

Изменяют положения потенциометрических выводов резисторов 16 электрических фильтров, добиваются отсутствия показания вольтметра постоянного тока 17 (фиг.3).

Индуктивный преобразователь 2 первого резонансного контура помещают поочередно в муфтовые соединения по всей длине трубы в скважине (фиг.2) и по отклонению от нулевого значения показания вольтметра постоянного тока 17, (фиг.3) судят о механической прочности конкретного муфтового соединения трубы в скважине. Резьбовое соединение трубы с помощью муфты может быть нарушено коррозионным процессом, либо когда в начале эксплуатации резьбовое соединение выполнено некачественно.

Предлагаемый способ позволит предупредить при выемке трубы, например скважинного насоса, аварию, которая значительно усложнит ремонт скважины.

Похожие патенты RU2465574C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОМАГНИТНОГО КОНТРОЛЯ МЕХАНИЧЕСКОЙ ПРОЧНОСТИ МУФТОВЫХ СОЕДИНЕНИЙ ТРУБ В СКВАЖИНАХ 2011
  • Богданов Валентин Иванович
  • Богданов Николай Иванович
  • Богданов Эдуард Николаевич
RU2462705C1
СПОСОБ ЭЛЕКТРОМАГНИТНОГО КОНТРОЛЯ МЕХАНИЧЕСКОЙ ПРОЧНОСТИ КРЕПЛЕНИЯ СИДЕНИЙ ТРАНСПОРТНЫХ СРЕДСТВ 2011
  • Богданов Валентин Иванович
  • Калмыков Борис Юрьевич
  • Овчинников Николай Александрович
RU2478945C1
СПОСОБ КОНТРОЛЯ ФИЗИКО-МЕХАНИЧЕСКИХ ПАРАМЕТРОВ ИЗДЕЛИЙ ИЗ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ 1992
  • Богданов В.И.
  • Богданов В.В.
RU2027178C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ФИЗИКО-МЕХАНИЧЕСКИХ ПАРАМЕТРОВ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ 1992
  • Богданов В.И.
  • Богданов В.В.
RU2020468C1
Способ контроля физико-механических параметров изделий из ферромагнитных материалов 1987
  • Богданов Валентин Иванович
  • Богданова Елена Валентиновна
SU1499215A2
Способ контроля физико-механических параметров изделий из ферромагнитных материалов 1983
  • Богданов Валентин Иванович
  • Елисеев Иван Николаевич
  • Калабухов Олег Радионович
SU1259174A1
Устройство для контроля физико-механических параметров ферромагнитных материалов и изделий 1989
  • Богданов Валентин Иванович
  • Богданов Николай Иванович
  • Богданова Елена Валентиновна
SU1739278A2
Устройство для контроля физико-механических параметров ферромагнитных изделий 1986
  • Богданов Валенин Иванович
  • Богданова Елена Валентиновна
SU1420513A1
УСТРОЙСТВО ИЗМЕРЕНИЯ ПРОВОДИМОСТИ И ИМПЕДАНСА ПЛАЗМЫ ТЛЕЮЩЕГО ГАЗОВОГО РАЗРЯДА ПОСТОЯННОГО ТОКА 2021
  • Чиркин Михаил Викторович
  • Устинов Сергей Владимирович
  • Новгородцев Сергей Владимирович
  • Серебряков Андрей Евгеньевич
  • Мишин Валерий Юрьевич
  • Иваненко Юлия Романовна
  • Волков Степан Степанович
RU2808957C2
Устройство для бесконтактного определения электрических и магнитных параметров сверхпроводящих образцов при фазовом переходе 1988
  • Венгалис Бонифацас Юозович
  • Лауринавичюс Лаймис Вацловович
  • Янкаускас Зигмас Казимирович
SU1675809A1

Иллюстрации к изобретению RU 2 465 574 C1

Реферат патента 2012 года СПОСОБ ЭЛЕКТРОМАГНИТНОГО КОНТРОЛЯ МЕХАНИЧЕСКОЙ ПРОЧНОСТИ МУФТОВЫХ СОЕДИНЕНИЙ ТРУБ В СКВАЖИНАХ

Изобретение относится к контрольно-измерительной технике и может быть использовано для контроля магнитной проницаемости и электропроводности изделий из ферромагнитных материалов. Сущность изобретения заключается в том, что недоступное для непосредственного контроля муфтовое соединение труб помещают в переменное магнитное поле неизменной частоты первого параметрического индуктивного преобразователя, включенного в последовательный LC-колебательный контур, а доступное и заведомо исправное муфтовое соединение труб скважины помещают в переменное магнитное поле неизменной частоты второго параметрического индуктивного преобразователя, включенного в последовательный LC-колебательный контур и соединенного по дифференциальной схеме с первым параметрическим индуктивным преобразователем LC-колебательного контура, при этом емкость конденсатора первого последовательного LC-колебательного контура устанавливают такой, при которой выполняется условие равенства величины реактивного сопротивления конденсатора удвоенной величине реактивного сопротивлении индуктивного преобразователя, т.е ХC=2ХL, а емкость конденсатора второго LC-колебательного контура устанавливают такой, при которой выполняется условие равенства величины реактивного сопротивления конденсатора величине реактивного сопротивлении индуктивного преобразователя, т.е. XC=XL, и по отклонению разности напряжений от нулевого значения на первом и втором LC-колебательных контурах судят об исправном состоянии муфтового соединения. Технический результат - расширение возможностей применения способа. 3 ил.

Формула изобретения RU 2 465 574 C1

Способ электромагнитного контроля механической прочности муфтовых соединений труб в скважинах заключающийся в том, что недоступное для непосредственного контроля муфтовое соединение труб помещают в переменное магнитное поле неизменной частоты первого параметрического индуктивного преобразователя, включенного в последовательный LC-колебательный контур, а доступное и заведомо исправное муфтовое соединение труб скважины помещают в переменное магнитное поле неизменной частоты второго параметрического индуктивного преобразователя, включенного в последовательный LC-колебательный контур и соединенного по дифференциальной схеме с первым параметрическим индуктивным преобразователем LC-колебательного контура, отличающийся тем, что емкость конденсатора первого последовательного LC-колебательного контура устанавливают такой, при которой выполняется условие равенства величины реактивного сопротивления конденсатора удвоенной величине реактивного сопротивления индуктивного преобразователя, т.е XC=2XL, а емкость конденсатора второго LC-колебательного контура устанавливают такой, при которой выполняется условие равенства величины реактивного сопротивления конденсатора величине реактивного сопротивления индуктивного преобразователя, т.е. XC=XL и по отклонению разности напряжений от нулевого значения на первом и втором LC-колебательных контурах судят об исправном состоянии муфтового соединения.

Документы, цитированные в отчете о поиске Патент 2012 года RU2465574C1

УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ФИЗИКО-МЕХАНИЧЕСКИХ ПАРАМЕТРОВ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ 1992
  • Богданов В.И.
  • Богданов В.В.
RU2020468C1
СПОСОБ КОНТРОЛЯ ФИЗИКО-МЕХАНИЧЕСКИХ ПАРАМЕТРОВ ИЗДЕЛИЙ ИЗ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ 1992
  • Богданов В.И.
  • Богданов В.В.
RU2027178C1
Устройство электромагнитного контроля металлических изделий 1984
  • Батюк Василий Васильевич
  • Ганский Павел Николаевич
  • Ганская Анна Гавриловна
  • Гачик Роман Ксенофонтович
  • Жданов Игорь Михайлович
  • Климентов Сергей Александрович
  • Пастухов Константин Викторович
SU1221578A1
WO 2006050914 А1, 18.05.2006.

RU 2 465 574 C1

Авторы

Богданов Валентин Иванович

Богданов Николай Иванович

Богданов Эдуард Николаевич

Даты

2012-10-27Публикация

2011-06-17Подача