СПОСОБ ОСВОЕНИЯ И ЭКСПЛУАТАЦИИ НЕФТЕДОБЫВАЮЩИХ СКВАЖИН Российский патент 2013 года по МПК E21B43/25 

Описание патента на изобретение RU2471975C2

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам для освоения и эксплуатации нефтедобывающих скважин.

Известны способы освоения и эксплуатации нефтедобывающих скважин, включающие изоляцию продуктивных пластов пакерами, декольматацию пласта и отбор пластового флюида с последующим вызовом притока (Освоение скважин: Справочное пособие / под ред. Р.С.Яремийчука - М.: ООО «Недра-Бизнесцентр», 1999. - 472 с., ил. с.28-41).

Недостатком известного способа является низкая эффективность из-за невозможности воздействия на продуктивные пласты дополнительными внешними усилиями в процессе освоения и эксплуатации.

Известен также способ освоения и эксплуатации скважин, включающий установку пакера с перепускным устройством на насосно-компрессорных трубах - НКТ, очистку ствола от скважинной жидкости, перевод перепускного устройства из положения «закрыто» в положение «открыто» и перепускание через него по НКТ из подпакерного пространства затрубного газа в трубную полость вместе с пластовым флюидом и выведение скважины на фонтанный режим работы (Патент РФ на изобретение №2394978, МПК E21B 43/00, опубл. 20.07.2010 г. - прототип).

Недостатками известного способа являются низкая эффективность, вследствие того, что:

- для очистки ствола скважины от жидкости применяется глубинный насос, впоследствии простаивающий;

- для интенсификации откачки используется пластовый газ, объема которого не всегда достаточно для успешной фонтанной откачки жидкости из пласта особенно на поздних сроках эксплуатации;

- степень декольматации пластовых каналов определяется внешними факторами, которые невозможно регулировать.

Задачей, решаемой использованием заявляемого технического решения, является обеспечение высокой эффективности освоения путем декольматации пластов расширяющимся азотом при переходе его из жидкого в газообразное состояние.

Решение поставленной задачи обеспечивает получение технического результата, заключающегося в повышении эффективности освоения и эксплуатации скважин.

Указанный технический результат достигается тем, что в способе освоения и эксплуатации скважин, включающем установку пакера с перепускным устройством и глубинным насосом на насосно-компрессорных трубах - НКТ, очистку ствола от скважинной жидкости, перевод перепускного устройства из положения «закрыто» в положение «открыто» и перепускание через него по НКТ из подпакерного пространства затрубного газа в трубную полость вместе с пластовым флюидом и выведение скважины на фонтанный режим работы, перед спуском пакера и перепускного устройства скважину промывают от бурового раствора, очистку подпакерного пространства ствола скважины от скважинной жидкости ведут посредством закачки с поверхности до забоя в подпакерное пространство газообразного азота, затем на забой закачивают жидкий азот и перепускное устройство переводят из положения «открыто» в положение «закрыто» до тех пор, пока давление в стволе не сравняется с пластовым, после чего пакер открывают и скважину эксплуатируют фонтанным или механизированным способом.

Промывка скважины от бурового раствора обеспечивает чистоту скважинной жидкости, благодаря чему снижается степень кольматационного воздействия ее на пласт.

Очистка подпакерного пространства от скважинной жидкости закачкой с поверхности до забоя в подпакерное пространство газообразного азота еще более снижает степень кольматации пласта.

Закачка на забой жидкого азота и перевод перепускного устройства из положения «открыто» в положение «закрыто» до тех пор, пока давление в стволе не сравняется с пластовым, обеспечивает раскрытие пор в пласте под действием возрастающего давления, создаваемого расширяющимся газом, преобразующимся из жидкого состояния.

Для снижения кольматации стенок скважины в зоне перфорации скважину осушают и обрабатывают жидким азотом периодически.

Перепускное устройство выполнено в виде стационарного или извлекаемого клапана с дистанционным управлением. После перевода перепускного устройства из состояния «открыто» в состояние «закрыто» ожидают сравнивания давление в стволе с пластовым, после чего переводят перепускное устройство из состояния «закрыто» в состояние «открыто» и продолжают эксплуатировать скважину через перепускное устройство по колонне НКТ в фонтанирующем режиме или механизированным способом.

Предлагаемый способ освоения и эксплуатации скважины позволяет дополнительно использовать газ, выделившийся в из жидкого азота в свободную фазу и накопившийся в подпакерной зоне, для раскрытия трещин в пласте, благодаря чему облегчается выход из пласта добываемого пластового флюида и создаются условия для его фонтанирования. Кроме того, за счет барботажа скважинной жидкости газом, происходит образование газожидкостной смеси с низкой плотностью, сопровождающееся снижением противодавления на пласт. Это положительно сказывается на величине депрессии и соответственно на приток в скважину пластового флюида.

Изобретение поясняется чертежами, на которых схематично представлено осуществление заявляемого способа: на фиг.1 представлена схема оборудования экспериментальной скважины до освоения; на фиг.2 - то же, в процессе продувки надпакерного пространства; на фиг.3 - то же, что и на фиг.1 в процессе закачки на забой жидкого азота; на фиг.4 - то же, что и на фиг.1 в процессе эксплуатации пласта.

Добычная скважина оборудована эксплуатационной обсадной колонной 1 с перфорированным участком 2 в интервале продуктивного пласта 3 и колонной головкой 4 с задвижками 5, 6, 7, 8 и 9 и подвешенной на ней колонной насосно-компрессорных труб (НКТ) 10 с пакером 11 и регулятором в виде обратного клапана 12 и циркуляционного клапана 13. Полость колонны 1 заполнена буровым раствором (или жидкостью глушения) 14 от забоя 15 и до устья скважины. Для обработки забоя 15 используется пачка 16 жидкого азота.

Способ реализуется следующим образом.

В эксплуатационную колонну 1 с интервалом перфорации 2, как всегда после бурения и перфорации заполненную буровым раствором 14, спускают последовательно на колонне НКТ 10 пакер 11, перекрывающий межтрубное, пространство, с дистанционно управляемым регулятором виде обратного клапана 12 и циркуляционного клапана 13, и устанавливают колонную головку 4, монтируя оборудование, как показано на фиг.1.

Затем начинают осваивать скважину, последовательно очищая ее полость от бурового раствора или жидкости глушения сначала в надпакерной области (фиг.2), продувая ее газом или сжатым воздухом, впуская его в межтрубное пространство через открытую задвижку 6 и выпуская газоводяную смесь через циркуляционный клапан 13, полость НКТ 10 и открытую задвижку 8 (остальные задвижки закрыты), а затем задавливая раствор (или жидкость глушения) 14 через перфорационные каналы участка обсадной колонны 2 в пласт 3 газом или сжатым воздухом, закачиваемым в подпакерную область через открытую задвижку 7, полость НКТ 10 мимо закрытого циркуляционного клапана 13 и через открытый обратный клапан 12. При этом в пласте 3 создаются напряжения, достигающие степени гидроразрыва газо- и (или) нефтеподводящих каналов пласта 3.

Следующий этап освоения заключается в охлаждении инструмента и оборудования в надпакерной области продувкой ее низкотемпературным газом, впуская его в межтрубное пространство через открытую задвижку 6 и выпуская через циркуляционный клапан 13, полость НКТ 10 и открытую задвижку 8 (остальные задвижки закрыты).

После охлаждения инструмента и оборудования на забой закачивается пачка жидкого азота (фиг.3), подаваемая в подпакерную область через открытую задвижку 9, полость НКТ 10 мимо закрытого циркуляционного клапана 13 и через открытый обратный клапан 12, продавливаемая в пласт 3 через перфорационные каналы участка обсадной колонны 2 газом или сжатым воздухом, закачиваемым в подпакерную область через открытую задвижку 7, полость НКТ 10 мимо закрытого циркуляционного клапана 13 и через полость обратного клапана 12, обеспечивающего последующее после «продавки» «замыкание» пачки жидкого азота в подпакерной области скважины и в пласте 3. При этом в пласте 3 под действием расширяющегося объема замерзающей жидкости глушения (или бурового раствора) создаются напряжения, полностью направляемые в пласт, разрушающие стенки газо- и (или) нефтеподводящих каналов пласта 3 и приводящие к их расширению.

Выдержка во времени пачки жидкого азота на забое зависит от глубины скважины, объема пачки жидкого азота, мощности продуктивного пласта, величины интервала перфорации и теплопроводности вскрытых горных пород и может длиться от 0,45 часа до 2,5 часов, после чего производится «открытие» пакера 11, и, как результат, резкое падение давления в полости скважины, что при постоянном пластовом давлении и при раскрытых газо- и (или) нефтеподводящих каналах пласта 3 приводит к фонтанированию пластового флюида через устье скважины.

После выравнивания динамического уровня пластового флюида решается вопрос о способе эксплуатации скважины: фонтанным или механизированным. В последнем случае обратный клапан заменяется насосом: электроцентробежным или вставным штанговым.

Пример 1: Определение дебита нефти скважины после реализации предлагаемой технологии.

Пусть q - дебит скважины радиуса rc в однородном пласте постоянной толщины h с проницаемостью k; величина q находится по классической формуле Дюпюи; q1 - дебит скважины радиуса rc с загрязненной призабойной зоной rc<r≤R, где проницаемость равна k1. Вне зоны загрязнения, т.е. в области R<4≤Rk проницаемость равна k; R - радиус зоны загрязнения вокруг скважины, Rk - радиус контура питания (радиус дренажа).

При одинаковых депрессиях справедливо равенство:

Пусть q* - дебит скважины увеличенного радиуса R (т.е. радиус скважины после применения технологии стал равен R). Тогда, используя формулу Дюпюи, получим:

Из (1) и (2) находим искомую формулу для оценки относительного увеличения дебита после применения технологии:

Результаты расчетов по относительному увеличению дебита с использованием формулы (3) при Rk=400 м, rc=0,1 м, k/k1=2 и k/k1=4 приведены в табл.2:

Таблица 2 R, m 0,10 0,15 0,20 0,25 0,30 0,35 0,40 k/k1=2 0 0,103 0,182 0,248 0,305 0,356 0,401 k/k1=4 0 0,206 0,364 0,496 0,610 0,711 0,802

Как видно из табл.2, дебит скважины существенно возрастает. Например, при k/k1=4, R=0,25 м рост дебита скважины достигает 50%.

Пример 2: Изменение проницаемости и пористости образцов керна горной породы в результате обработки их жидким азотом в лабораторных условиях.

Для проведения исследований были взяты два образца керна, предварительно осушенных и насыщенных: №4424-05 - пресной водой (p=1000 кг/м3); №4494-05 - керосином (p~700 кг/м3).

Для экстрагированных образцов керна №№4424=05, 4494-05 определена пористость и проницаемость по воздуху до эксперимента. Образцы опускались на 30 мин в сосуд с жидким азотом до их промерзания.

После эксперимента было проведено повторное экстрагирование на аппарате Сокслета гликолем.

В результате эксперимента проницаемость и пористость образцов по воздуху изменилась.

Данные приведены в табл.1:

Образец №4424-05 (водонасыщенный) Образец №4494-05 (керосинонасыщенный) Пористость Проницаемость по воздуху Пористость Проницаемость по воздуху До эксперимента 0,19 14,00 0,21 13,10 После эксперимента 0,20 16,58 0,22 13,62

Проницаемость по воздуху образца №4424-05 (водонасыщенного) увеличилась на 15,6%.

Проницаемость по воздуху образца №4494-05 (керосинонасыщенного) увеличилась на 3,8%.

Эксперимент показывает, что замерзание жидкости в породе приводит к изменениям ее проницаемости.

Максимальное изменение происходит при замерзании воды в микропорах породы, что обусловлено расширением (≥9%) воды при фазовом переходе ее в твердое состояние.

ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ИЛИ ИНАЯ ЭФФЕКТИВНОСТЬ

1. Повышение дебита эксплуатационных скважин.

2. Снижение затрат времени и реагентов на обработку скважин.

Похожие патенты RU2471975C2

название год авторы номер документа
СПОСОБ ОСВОЕНИЯ И ЭКСПЛУАТАЦИИ СКВАЖИН 2009
  • Гарипов Олег Марсович
RU2394978C1
Способ добычи нефти с высоким газовым фактором 2020
  • Ершов Андрей Александрович
  • Валеев Ильнур Ильсурович
  • Мурсалимов Айдар Галимьянович
RU2737805C1
Способ освоения и эксплуатации скважин с использованием растворенного газа и монтажа установки для его реализации 2018
  • Гарипов Олег Марсович
  • Вербицкий Владимир Сергеевич
  • Деньгаев Алексей Викторович
RU2715008C1
СПОСОБ ГАЗОКИСЛОТНОЙ ИНТЕНСИФИКАЦИИ ПРИТОКА НЕФТИ ИЗ ПЛАСТА ДОБЫВАЮЩИХ И НАГНЕТАТЕЛЬНЫХ НЕФТЯНЫХ СКВАЖИН 2008
  • Колчин Владимир Николаевич
  • Колчин Андрей Владимирович
RU2391499C2
СПОСОБ РАБОТЫ СКВАЖИННОЙ НАСОСНОЙ УСТАНОВКИ ПРИ ОСВОЕНИИ СКВАЖИНЫ И СКВАЖИННАЯ НАСОСНАЯ УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Хоминец Зиновий Дмитриевич
RU2189504C1
СПОСОБ ГЛУШЕНИЯ ГАЗОВОЙ СКВАЖИНЫ 2006
  • Обиднов Виктор Борисович
  • Кустышев Александр Васильевич
  • Ткаченко Руслан Владимирович
  • Зозуля Григорий Павлович
  • Кряквин Дмитрий Александрович
  • Кустышев Игорь Александрович
RU2347066C2
СПОСОБ И УСТРОЙСТВО ГИДРОТАРАНА ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА И ОСВОЕНИЯ СКВАЖИН 2013
  • Ерилин Сергей Александрович
RU2534116C1
СПОСОБ РАБОТЫ СКВАЖИННОЙ СТРУЙНОЙ УСТАНОВКИ ПРИ ИСПЫТАНИИ И ОСВОЕНИИ СКВАЖИН И СКВАЖИННАЯ СТРУЙНАЯ УСТАНОВКА 2001
  • Хоминец Зиновий Дмитриевич
RU2188342C1
СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА ГАЗОКОНДЕНСАТНОЙ СКВАЖИНЫ 2006
  • Обиднов Виктор Борисович
  • Кустышев Александр Васильевич
  • Зозуля Григорий Павлович
  • Ткаченко Руслан Владимирович
  • Кустышев Денис Александрович
  • Ваганов Юрий Владимирович
RU2324050C2
СКВАЖИННАЯ УСТАНОВКА ДЛЯ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ И ПООЧЕРЕДНОЙ ЭКСПЛУАТАЦИИ НЕСКОЛЬКИХ ПЛАСТОВ ОДНОЙ СКВАЖИНОЙ 2003
  • Шарифов Махир Зафар Оглы
  • Леонов В.А.
  • Ужаков В.В.
  • Краснопёров В.Т.
  • Кузнецов Н.Н.
  • Гарипов О.М.
  • Гурбанов Сейфулла Рамиз Оглы
  • Набиев Натиг Адил Оглы
  • Набиев Физули Ашраф Оглы
  • Синёва Ю.Н.
  • Юсупов Р.Ф.
RU2262586C2

Иллюстрации к изобретению RU 2 471 975 C2

Реферат патента 2013 года СПОСОБ ОСВОЕНИЯ И ЭКСПЛУАТАЦИИ НЕФТЕДОБЫВАЮЩИХ СКВАЖИН

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам для освоения и эксплуатации нефтедобывающих скважин. Обеспечивает повышение эффективности освоения и эксплуатации скважины. Сущность изобретения: способ включает установку пакера с перепускным устройством и глубинным насосом на насосно-компрессорных трубах - НКТ, очистку ствола от скважинной жидкости, перевод перепускного устройства из положения «закрыто» в положение «открыто» и перепускание через него по НКТ из подпакерного пространства затрубного газа в трубную полость вместе с пластовым флюидом и выведение скважины на фонтанный режим работы. Перед спуском пакера и перепускного устройства скважину промывают от бурового раствора. Очистку подпакерного пространства ствола скважины от скважинной жидкости ведут посредством закачки с поверхности до забоя в подпакерное пространство газообразного азота. Затем на забой закачивают жидкий азот и перепускное устройство переводят из положения «открыто» в положение «закрыто» до тех пор, пока давление в стволе не сравняется с пластовым. После этого пакер открывают и скважину эксплуатируют фонтанным или механизированным способом. 2 пр., 2 табл., 4 ил.

Формула изобретения RU 2 471 975 C2

Способ освоения и эксплуатации скважин, включающий установку пакера с перепускным устройством на насосно-компрессорных трубах - НКТ, очистку ствола от скважинной жидкости, перевод перепускного устройства из положения «закрыто» в положение «открыто» и перепускание через него по НКТ из подпакерного пространства затрубного газа в трубную полость вместе с пластовым флюидом и выведение скважины на фонтанный режим работы, отличающийся тем, что перед спуском пакера и перепускного устройства скважину промывают от бурового раствора, очистку ствола скважины от скважинной жидкости ведут посредством закачки по НКТ с поверхности до забоя в подпакерное пространство газообразного азота, затем на забой по НКТ закачивают жидкий азот и перепускное устройство переводят из положения «открыто» в положение «закрыто» до тех пор, пока давление в стволе не сравняется с пластовым, после чего пакер открывают и скважину эксплуатируют фонтанным или механизированным способом.

Документы, цитированные в отчете о поиске Патент 2013 года RU2471975C2

СПОСОБ ОСВОЕНИЯ И ЭКСПЛУАТАЦИИ СКВАЖИН 2009
  • Гарипов Олег Марсович
RU2394978C1
СПОСОБ РАБОТЫ СТРУЙНОЙ УСТАНОВКИ ЭМПИ УГИС (31-40)Г ПРИ ОСВОЕНИИ И ЭКСПЛУАТАЦИИ НЕФТЕГАЗОВЫХ СКВАЖИН 2006
  • Хоминец Зиновий Дмитриевич
RU2307959C1
СПОСОБ РАБОТЫ СКВАЖИННОЙ СТРУЙНОЙ УСТАНОВКИ В ФОНТАНИРУЮЩЕЙ СКВАЖИНЕ С АНОМАЛЬНО НИЗКИМ ПЛАСТОВЫМ ДАВЛЕНИЕМ 2008
  • Хоминец Зиновий Дмитриевич
RU2384757C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ 2006
  • Ибрагимов Наиль Габдулбариевич
  • Валеев Мудаир Хайевич
  • Ханнанов Рустэм Гусманович
  • Юсупов Булат Назипович
RU2304710C1
СПОСОБ ОБРАБОТКИ СКВАЖИНЫ 1992
  • Корнев Б.П.
  • Никифоров С.Н.
  • Сухов А.И.
  • Шопов И.И.
RU2049227C1
Способ разрыва горного массива 1979
  • Коробков Александр Алексеевич
  • Янсон Михаил Олегович
SU836339A1
Способ освоения скважины 1979
  • Куртов Вениамин Дмитриевич
SU872732A1
US 4687061 A, 18.08.1987
US 5474129 A, 12.12.1995.

RU 2 471 975 C2

Авторы

Валеев Виктор Семенович

Болтаев Владимир Владимирович

Медведев Василий Васильевич

Кононов Виктор Васильевич

Байрашев Кузьма Андреевич

Киселев Алексей Владимирович

Сорокин Павел Михайлович

Исламов Булат Ильдусович

Абашев Альберт Раисович

Попович Владимир Юрьевич

Даты

2013-01-10Публикация

2011-01-13Подача