РЕАКТОРНАЯ УСТАНОВКА Российский патент 2013 года по МПК G21C1/00 

Описание патента на изобретение RU2473984C1

Изобретение относится к ядерной технике, а конкретно - к устройствам реакторных установок (РУ), обеспечивающим движение теплоносителя внутри резервуара с активной зоной. Изобретение может быть преимущественно использовано в РУ энергетического назначения, включающих реактор на быстрых нейтронах (быстрый реактор), охлаждаемый тяжелым жидкометаллическим теплоносителем (свинец, сплав свинца и висмута), в частности на атомных станциях различного назначения.

Задача развития мировой энергетики явно сформулирована (в ее основной части) как обеспечение устойчивого развития человечества и его экологическое оздоровление. При существующей численности населения Земли, а также принятых способах и условиях его воспроизводства не представляется возможным глобально решить указанную задачу как при использовании энергии наиболее доступных и традиционных видов органического топлива (уголь, нефть, природный газ), так и - энергии Солнца и других возобновляемых источников (энергия ветра и морских приливов, гидро- и геотермальная энергия). Получение энергии путем сжигания органического топлива ведет к чрезмерному загрязнению окружающей среды отходами энергопроизводства (в том числе, за счет отравления продуктами горения и выброса парниковых газов). Возобновляемые источники энергии рассеяны в пространстве, а их мощность непостоянна во времени, что требует решения сложных проблем аккумулирования энергии и передачи ее на большие расстояния потребителю, но главное в том, что их общие ресурсы не соответствуют ожидаемому человечеством потреблению. Использование же для производства топлива биомассы на основе пищевых продуктов или продуктов, вытесняющих производство пищевых, противоречит самому существованию значительной части человечества.

Проблема энергетического обеспечения человечества в течение обозримого будущего может быть решена только за счет использования ядерной энергии, высвобождаемой при делении тяжелых ядер в реакторах на быстрых нейтронах. Топливные ресурсы для реакторов на тепловых нейтронах весьма ограничены. Альтернативный способ высвобождения энергии - синтез легких ядер - до сих пор был осуществлен на Земле лишь при взрывах термоядерных боезарядов и в физических экспериментах. Уникальный избыток нейтронов (по сравнению с необходимым для цепной реакции) в быстрых реакторах на уран-плутониевом топливе дает возможность перехода к размножению делящихся изотопов, многократно увеличивая топливные ресурсы человечества. Быстрые реакторы являются единственным средством полного использования урана и тория для производства энергии, в том числе и того урана, который сейчас накапливается в отвалах. Ядерная энергетика на основе быстрых реакторов обладает потенциалом для развития в крупных масштабах с возможностью решения глобальных задач по жизнеобеспечению человечества, позволяя при этом значительно снизить потребление органического топлива. В отличие от энергетики на органическом топливе такая ядерная энергетика может развиваться длительное время и в широких масштабах не нарушая природных естественных процессов.

Ядерная энергетика (при нормальной рутинной работе атомных станций) по степени влияния на окружающую среду и население выгодно отличается от традиционной энергетики на органическом топливе. Но предприятия ядерной энергетики потенциально более опасны, чем любой другой из известных источников энергии, и требуют, как показывает мировой опыт, более высокой технической культуры проектирования, изготовления и эксплуатации. Однако уникальные свойства быстрых реакторов оправдывают усилия и риск, связанные с овладением этой технологией.

Свойства теплоносителя во многом определяют особенности ядерной технологии в целом. Опыт создания РУ свидетельствует о существенной роли теплоносителя при выборе конструктивных решений, материалов конструкции и обосновании эксплуатационных режимов. Наибольший объем знаний и опыт эксплуатации имеются для быстрых реакторов, охлаждаемых жидкими металлами [Поплавский В.М. Быстрые реакторы. Состояние и перспективы.- Атомная энергия, 2004, Т.96, вып.5, с.328…335]. Так суммарное время работы быстрых реакторов, охлаждаемых натрием (18 проектов, реализованных в мире), к настоящему времени превышает 300 реакторо-лет, а эвтектическим сплавом свинец-висмут - достигает почти 80 реакторо-лет (в нашей стране эксплуатировалось 12 реакторов в составе РУ корабельного типа). Опыт применения свинцово-висмутового теплоносителя показал хорошие потребительские свойства таких РУ. В последние годы тяжелые жидкометаллические теплоносители рассматриваются как перспективные для использования в энергетических контурах объектов ядерной энергетики, в основном из-за того, что они в большей степени (по сравнению с легкими жидкометаллическими) удовлетворяют требованиям обеспечения безопасности [см., например, Безносов А.В., Драгунов Ю.Г., Рачков В.И. Тяжелые жидкометаллические теплоносители в атомной энергетике. - М.: Издательство по Атомной технике, 2007. - 434 с.: с.10…11].

На различные характеристики РУ, в которых под свободным уровнем теплоносителя расположены главные циркуляционные насосы (ГЦН) для прокачки его по первому контуру, влияет принятая величина заглубления рабочего колеса ГЦН. Применительно к уже традиционным для РУ теплоносителям (воде и натрию) разработана и обоснована общепринятая методика расчета кавитационной характеристики лопастного насоса. Согласно этой методике величину заглубления определяют исходя из необходимости создания требуемого противокавитационного подпора на всасывании рабочего колеса за счет гидростатического давления столба воды или жидкого натрия в совокупности с давлением газа (пара) над свободным уровнем теплоносителя. Этот подпор должен исключать кавитацию (вскипание теплоносителя в зонах пониженного давления с образованием его паров и разрывом сплошности перекачиваемой среды и последующую конденсацию образований паровой фазы - схлопывание образовавшихся пузырьков в области повышенного давления) на всех режимах работы реакторной установки. Кавитация в насосе может привести к ухудшению теплоотвода от активной зоны реактора, а также - к разрушению элементов проточной части вследствие кавитационной эрозии. Однако свинцовый и свинцово-висмутовый теплоносители существенно отличаются по своим физическим свойствам от указанных традиционных теплоносителей (в частности, температура кипения тяжелых жидкометаллических теплоносителей существенно превышает их рабочую температуру в соответствующей РУ). Как показали экспериментальные исследования [см., например, Безносов А.В., Антоненков М.А., Боков П.А., Баранова B.C., Кустов М.В. Специфика циркуляционных насосов реакторных контуров со свинцовым и свинец-висмутовым теплоносителями. - Известия вузов. Ядерная энергетика, 2009, №4, С.155…161], в тяжелых жидкометаллических теплоносителях исключена традиционно понимаемая кавитация в проточной части насосов, а эрозионные явления, ранее относимые на ее счет, вызваны другими процессами. Таким образом в контурах с такими теплоносителями отсутствует необходимость существенного заглубления рабочих колес ГЦН под свободный уровень теплоносителя.

В последние годы среди новых и перспективных концепций реакторов для ядерной энергетики предложены многоцелевые модульные быстрые реакторы со свинцово-висмутовым теплоносителем, предназначенные для замещения выведенных из эксплуатации блоков атомных станций (при их реновации), для применения в составе модульных атомных станций, а также автономных энергоисточников для опреснения и других целей. Возможности полностью заводского изготовления такой РУ и транспортировки ее железнодорожным или водным транспортом на строительную площадку улучшают качество и уменьшают сроки строительства, а также сокращают инвестиционный цикл. Известна РУ малой мощности со свинцово-висмутовым теплоносителем СВБР-75 (Свинцово-Висмутовый Быстрый Реактор электрической мощностью 75 МВт), в которой применена интегральная (моноблочного типа) компоновка первого контура (без использования трубопроводов и арматуры) в реакторном модуле бассейнового типа, содержащем внутри единого корпуса активную зону, теплообменники для теплопередачи от теплоносителя к рабочему телу (в виде модулей испарителей и пароперегревателей), а также два ГЦН для прокачки теплоносителя по первому контуру [см., например, Тошинский Г.И., Степанов B.C. Быстрые реакторы с тяжелым жидкометаллическим теплоносителем // Машиностроение: Энциклопедия. Машиностроение ядерной техники. Т. IV-25. Кн. 1. - М.: Машиностроение, 2005. - 312 с., С.667…672: Рис.2.10.26 на с.668]. ГЦН вертикального исполнения погружены по одному в отдельные вертикальные шахты, снабженные верхним и нижним ярусами отверстий для подвода теплоносителя к рабочему колесу осевого типа. При этом поток теплоносителя на входе в рабочее колесо направлен сверху вниз, а рабочие колеса всех ГЦН расположены на уровне нижней половины активной зоны. При работе ГЦН свинцово-висмутовый теплоноситель циркулирует в первом контуре по следующей схеме: с напора ГЦН через каналы в массиве внутрикорпусной радиационной защиты поступает в напорную камеру, проходит через активную зону, после которой попадает в соответствующие каналы испарителей и пароперегревателей. Пройдя последние, теплоноситель поступает в периферийную буферную полость реакторного модуля со свободным уровнем теплоносителя. Из указанной полости один поток теплоносителя проходит по опускному кольцевому каналу вдоль корпуса реакторного модуля и через нижний ярус отверстий (перфораций) поступает на сторону всасывания. Другой поток теплоносителя поступает через верхний ярус отверстий в кольцевой канал, образованный внутренней поверхностью шахты и внешней поверхностью корпуса ГЦН, а из этого канала - на всасывание.

Недостатком этой РУ является большая величина заглубления рабочего колеса ГЦН (выбранная по общепринятой методике расчета кавитационной характеристики), которую обеспечивают соответствующей длиной вала. При этом рабочее колесо и близкие к нему элементы выемной части ГЦН, находясь на уровне активной зоны, сильно активируются нейтронным излучением. Указанный выбор длины вала влечет ухудшение вибрационной характеристики ГЦН, усложнение технологических операций монтажа-демонтажа его выемной части, а также увеличение массогабаритных характеристик и уменьшение экономичности как ГЦН, так и РУ в целом. Другие недостатки этой РУ обусловлены организацией двух потоков теплоносителя на сторону всасывания ГЦН. Из-за неоднородности и нестационарности этих потоков их смешение перед рабочим колесом увеличивает разброс параметров потока теплоносителя на входе в рабочее колесо. А вследствие необходимости обеспечения в кольцевом канале между внутренней поверхностью шахты и внешней поверхностью корпуса ГЦН приемлемых скоростей теплоносителя существуют ограничения на внешние размеры корпуса ГЦН внутри шахты.

Задача, решаемая изобретением, состоит в повышении надежности ГЦН вертикального исполнения в составе РУ с интегральной компоновкой бассейнового типа (и, соответственно, РУ в целом), упрощении эксплуатации и обслуживания таких ГЦН, а также уменьшении массогабаритных характеристик указанных РУ.

При осуществлении изобретения могут быть получены, в частности, следующие технические результаты: во-первых, предотвращение попадания газа и примесей в поток теплоносителя, идущий к рабочему колесу; во-вторых, уменьшение напряжений в элементах корпуса ГЦН выше рабочего колеса; в-третьих, увеличение жесткости консольной части ГЦН; в-четвертых, уменьшение разброса параметров потока теплоносителя перед рабочим колесом; в-пятых, уменьшение активации элементов выемной части ГЦН.

Как решение задачи, позволяющее достигнуть эффекта с указанными характеристиками, предлагается РУ, включающая охлаждаемый тяжелым жидкометаллическим теплоносителем реактор на быстрых нейтронах, с интегральной компоновкой первого контура в реакторном модуле бассейнового типа, содержащем внутри единого корпуса активную зону и по меньшей мере один лопастной циркуляционный насос вертикального исполнения для прокачки теплоносителя по первому контуру, погруженный в отдельную шахту реакторного модуля, причем поток теплоносителя на входе в рабочее колесо указанного насоса направлен сверху вниз.

В отличие от прототипа каждый циркуляционный насос снабжен подводящим устройством из прикрепленных к корпусу этого насоса вертикальных лопаток, расположенных вдоль узкой части указанного корпуса над рабочим колесом и направленных радиально к геометрической оси вала циркуляционного насоса. Ввод теплоносителя в подводящее устройство выполнен из-под свободного уровня теплоносителя через кольцевую систему окон, образованных верхними частями лопаток подводящего устройства и горизонтальным кольцеобразным козырьком, ограничивающим окна сверху. Вал циркуляционного насоса выполнен такой длины, что рабочее колесо по уровню расположено выше активной зоны.

Предлагаемая реакторная установка (в частном исполнении) поясняется чертежами:

Фиг.1 - реакторный модуль (вертикальный разрез);

Фиг.2 - циркуляционный насос в шахте (вертикальный разрез);

Фиг.3 - циркуляционный насос в шахте (горизонтальное сечение у рабочего колеса);

Фиг.4 - циркуляционный насос в шахте (горизонтальное сечение по узкой части корпуса выше рабочего колеса).

В корпусе 1 реакторного модуля размещены активная зона 2, по меньшей мере один теплообменник 3 для теплопередачи от теплоносителя к рабочему телу, внутрикорпусная радиационная защита (в том числе, нижняя 4, боковая 5 и верхняя 6), по меньшей мере один лопастной циркуляционный насос 7 вертикального исполнения. Каждый насос 7 установлен в отдельной вертикальной шахте 8, причем поток теплоносителя на входе в рабочее колесо 9 осевого типа направлен сверху вниз. Внутри корпуса 1 образованы напорная камера 10 и периферийная буферная полость 11, а в последней над свободным уровнем теплоносителя начинается газовая полость 12. Любой из теплообменников 3 составлен из модулей испарителей и пароперегревателей рекуперативного типа.

Каждый циркуляционный насос 7 снабжен подводящим устройством из вертикальных лопаток 13 (в данном случае, из пяти), направленных радиально относительно геометрической оси вала 14 насоса 7 и прикрепленных к элементам корпуса 15 указанного насоса. Верхние части лопаток 13 образуют выше торца шахты 8 кольцевую систему окон 16, ограниченных сверху горизонтальным кольцеобразным козырьком 17. Последний расположен ниже минимального свободного уровня 18 теплоносителя (без учета возможных локальных понижений в виде вихревых воронок с газовым ядром), соответствующего работе циркуляционного насоса 7 в номинальном режиме. Для уменьшения гидравлического сопротивления подводящего устройства между его лопатками 13 выполнен обтекатель 19, омываемая теплоносителем поверхность которого примыкает к нижней поверхности козырька 17. Угловые шаги между смежными лопатками 13 и количество последних выбирают, исходя из особенностей компоновки конкретной реакторной установки (обеспечивая при этом, например, одинаковую среднюю скорость теплоносителя в каждом из окон 16). К элементам корпуса 15 циркуляционного насоса 7 вблизи его рабочего колеса 9 все лопатки 13 подводящего устройства прикреплены одинаковым образом. К узкой части 20 корпуса 15 выше рабочего колеса 9 снаружи прикреплена (целесообразное всего - посредством сварки) ближняя к оси вала 9 сторона каждой лопатки 13, а к части 21 корпуса 15, охватывающей рабочее колесо 9 и ограничивающей выправляющий аппарат 22, прикреплена (например, также сваркой) нижняя часть каждой лопатки 13.

Лопатки 13 примыкают по существу к стенке шахты 8. Вал 14 циркуляционного насоса 7 выполнен такой длины, что рабочее колесо 9 по уровню расположено выше активной зоны 2. Вращение вала 14 и рабочего колеса 9 производят с помощью приводного двигателя 23 (в данном случае, электрического), установленного вне корпуса 1 реакторного модуля.

Лопатки 13 подводящего устройства воспринимают некоторую долю нагрузки от части 21 корпуса 15 циркуляционного насоса 7 и выправляющего аппарата 22, уменьшая напряжения в элементах узкой части 20 корпуса 15 выше рабочего колеса 9. При этом лопатки 13 увеличивают жесткость консольной части циркуляционного насоса 7, улучшая его вибрационную характеристику (наряду с укорочением вала 14).

При работе циркуляционного насоса 7 тяжелый жидкометаллический теплоноситель циркулирует в основном тракте первого контура по следующей схеме. С напора каждого циркуляционного насоса 7 по опускным каналам теплоноситель поступает в напорную камеру 10, затем проходит через активную зону 2, после которой попадает в соответствующие каналы теплообменника 3. Пройдя последний, теплоноситель поступает в периферийную буферную полость 11 реакторного модуля со свободным уровнем теплоносителя. В этой полости теплоноситель образует под козырьком 17 поток, направленный в кольцевую систему окон 16. Войдя в последние и обогнув обтекатель 19, теплоноситель по вертикальным каналам между лопатками 13 подводящего устройства попадает на сторону всасывания рабочего колеса 9. При этом обтекатель 19 способствует плавному изменению направления потока теплоносителя от горизонтального к вертикальному.

Ввод теплоносителя в циркуляционный насос 7, организованный через окна 16 прямо из-под свободного уровня теплоносителя с одинаковой по существу скоростью, уменьшает разброс параметров потока теплоносителя перед рабочим колесом 9 (увеличивает однородность и уменьшает нестационарность параметров). Кроме того, указанный ввод снимает ограничения на внешние размеры корпуса 15 циркуляционного насоса 7 внутри шахты 8, связанные со скоростью теплоносителя в канале между ними.

Ввод теплоносителя в подводящее устройство под козырьком 17 и организация последующего движения теплоносителя вдоль вертикальных лопаток 13 препятствует возможной закрутке потока теплоносителя над рабочим колесом 9 и формированию над ним участка свободной поверхности теплоносителя в виде параболоида вращения. Такая ситуация, возможная при большой скорости вращения вала 14 циркуляционного насоса 7, опасна захватом газа из газовой полости 12 и слоя примесей, находящихся на свободной поверхности теплоносителя в периферийной буферной полости 11, в поток теплоносителя, идущий к рабочему колесу 9.

Козырек 17 увеличивает расстояние от свободного уровня теплоносителя до окон 16, перекрывая подход к ним прямо по вертикали, и препятствует проникновению в окна 16 газового ядра вихревой воронки, что чревато упомянутыми выше опасными явлениями. Как известно, истечение жидкости из заглубленного отверстия может сопровождаться возникновением на ее свободном уровне воронки, образованной жидкостью, вращающейся относительно осевой линии ядра этой воронки в виде газовой полости. Последняя, проникая в сливное отверстие через слой жидкости, в частности, уменьшает рабочую площадь отверстия и его пропускную способность. Дополнительной мерой предотвращения указанного явления может быть такая установка циркуляционного насоса 7 в реакторном модуле, при которой козырек 17 расположен ниже минимального свободного уровня 18 теплоносителя над насосом 7 (без учета локальных понижений в виде указанных воронок), соответствующего работе насоса 7 в номинальном режиме, на величину, исключающую проникновение газового ядра вихревой воронки в какое-либо из окон 16. Методики определения критического напора (безопасного расстояния от свободного уровня до сливного отверстия) известны [см., например, Справочник по гидравлическим расчетам. - 4-е изд., перераб. и доп./ Под ред. П.Г.Киселева - М.: Энергия, 1972. - 312 с.: с.58…59]. Необходимая для предотвращения всех указанных опасных явлений величина заглубления рабочего колеса 9 для тяжелых жидкометаллических теплоносителей (в самом грубом приближении) превышает диаметр рабочего колеса 9 циркуляционного насоса 7.

Активация элементов выемной части циркуляционного насоса 7 уменьшена из-за того, что его рабочее колесо 9 (в результате укорочения вала 14 насоса 7) по уровню расположено выше активной зоны 2 в области реакторного модуля, где поток нейтронов существенно меньше. Это значительно упрощает эксплуатацию и обслуживание циркуляционного насоса 7. Кроме того, укорочение вала 14 циркуляционного насоса 7 высвобождает внутри реакторного модуля пространство, которое может быть отведено для усиления боковой радиационной защиты 5, а также позволяет, в общем случае, уменьшить массогабаритные характеристики как циркуляционного насоса 7, так и РУ в целом.

Похожие патенты RU2473984C1

название год авторы номер документа
ЯДЕРНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА И УСТРОЙСТВО ДЛЯ ВВОДА ЗАЩИТНОГО ГАЗА В УСТАНОВКУ 2014
  • Мартынов Петр Никифорович
  • Асхадуллин Радомир Шамильевич
  • Гулевский Виталий Алексеевич
  • Ульянов Владимир Владимирович
  • Тепляков Юрий Александрович
  • Фомин Артем Сергеевич
RU2566661C1
РЕАКТОРНАЯ УСТАНОВКА С РЕАКТОРОМ НА БЫСТРЫХ НЕЙТРОНАХ И СВИНЦОВЫМ ТЕПЛОНОСИТЕЛЕМ 2014
  • Кубинцев Борис Борисович
  • Леонов Виктор Николаевич
  • Лопаткин Александр Викторович
  • Чернобровкин Юрий Васильевич
RU2545098C1
УСТРОЙСТВО ПЕРЕГРУЗКИ 2014
  • Сердюк Сергей Павлович
  • Воинов Борис Шамильевич
  • Кузнецов Александр Иванович
RU2580925C1
СПОСОБ ОЧИСТКИ И ДЕЗАКТИВАЦИИ КОНТУРНОГО ОБОРУДОВАНИЯ РЕАКТОРНОЙ УСТАНОВКИ С ЖИДКОМЕТАЛЛИЧЕСКИМ СВИНЦОВО-ВИСМУТОВЫМ ТЕПЛОНОСИТЕЛЕМ 2011
  • Андрианов Анатолий Карпович
  • Кривобоков Виктор Васильевич
  • Москвин Леонид Николаевич
RU2459297C1
СПОСОБ ИЗВЛЕЧЕНИЯ ПРОБКИ И БЛОКА ВЫЕМНОГО ПРИ ПЕРЕГРУЗКЕ ЯДЕРНОГО РЕАКТОРА 2014
  • Васильев Николай Дмитриевич
  • Огурцов Владимир Евгеньевич
  • Кузнецов Александр Иванович
RU2558379C1
СПОСОБ ОЧИСТКИ И ДЕЗАКТИВАЦИИ ОБОРУДОВАНИЯ РЕАКТОРНОЙ УСТАНОВКИ С ЖИДКОМЕТАЛЛИЧЕСКИМ СВИНЦОВО-ВИСМУТОВЫМ ТЕПЛОНОСИТЕЛЕМ 2011
  • Андрианов Анатолий Карпович
  • Пащенко Сергей Викторович
RU2460160C1
УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ ВЫХОДА ЛЕТУЧИХ ВЕЩЕСТВ ИЗ ТЯЖЕЛОГО ЖИДКОМЕТАЛЛИЧЕСКОГО ТЕПЛОНОСИТЕЛЯ В ГАЗОВУЮ СРЕДУ 2015
  • Васюхно Владимир Петрович
  • Лемехов Вадим Владимирович
  • Моркин Михаил Сергеевич
  • Шушлебин Валерий Владимирович
RU2600732C1
СПОСОБ ДИАГНОСТИКИ ТЕПЛОНОСИТЕЛЯ СВИНЦОВО-ВИСМУТОВОГО БЫСТРОГО РЕАКТОРА И ДИАГНОСТИЧЕСКАЯ СИСТЕМА ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2014
  • Мартынов Петр Никифорович
  • Асхадуллин Радомир Шамильевич
  • Стороженко Алексей Николаевич
  • Легких Александр Юрьевич
RU2596159C2
Ядерный реактор с тяжелым жидкометаллическим теплоносителем 2021
  • Дедуль Александр Владиславович
  • Степанов Владимир Сергеевич
  • Тошинский Георгий Ильич
  • Арсеньев Юрий Александрович
  • Комлев Олег Геннадьевич
  • Вахрушин Михаил Петрович
  • Григорьев Сергей Александрович
  • Самкотрясов Сергей Владимирович
RU2756230C1
ЯДЕРНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2007
  • Безносов Александр Викторович
  • Бокова Татьяна Александровна
  • Савинов Сергей Юрьевич
  • Львов Алексей Витальевич
RU2339097C1

Иллюстрации к изобретению RU 2 473 984 C1

Реферат патента 2013 года РЕАКТОРНАЯ УСТАНОВКА

Изобретение относится к эксплуатации главного циркуляционного насоса (ГЦН) в составе реакторной установки с интегральной компоновкой бассейнового типа, охлаждаемой тяжелым жидкометаллическим теплоносителем. Вал ГЦН выполнен такой длины, что рабочее колесо по уровню расположено выше активной зоны. Каждый ГЦН снабжен подводящим устройством из прикрепленных к его корпусу вертикальных лопаток, расположенных вдоль узкой части корпуса ГЦН и направленных радиально к оси ГЦН. Ввод теплоносителя в подводящее устройство выполнен из-под свободного уровня теплоносителя через кольцевую систему окон, образованных верхними частями указанных лопаток и ограниченных сверху горизонтальным кольцеобразным козырьком. Технические результаты - предотвращение попадания газа и примесей в поток теплоносителя, идущий к рабочему колесу; уменьшение напряжений в элементах корпуса ГЦН; увеличение жесткости консольной части ГЦН; уменьшение разброса параметров потока теплоносителя перед рабочим колесом; уменьшение активации элементов выемной части ГЦН. 4 ил.

Формула изобретения RU 2 473 984 C1

Реакторная установка, включающая охлаждаемый тяжелым жидкометаллическим теплоносителем реактор на быстрых нейтронах, с интегральной компоновкой первого контура в реакторном модуле бассейнового типа, содержащем внутри единого корпуса активную зону и по меньшей мере один лопастной циркуляционный насос вертикального исполнения для прокачки теплоносителя по первому контуру, погруженный в отдельную шахту реакторного модуля, причем поток теплоносителя на входе в рабочее колесо указанного насоса направлен сверху вниз, отличающаяся тем, что вал циркуляционного насоса выполнен такой длины, что рабочее колесо по уровню расположено выше активной зоны, каждый циркуляционный насос снабжен подводящим устройством из прикрепленных к корпусу этого насоса вертикальных лопаток, расположенных вдоль узкой части корпуса циркуляционного насоса над его рабочим колесом и направленных радиально к геометрической оси вала указанного насоса, ввод теплоносителя в подводящее устройство выполнен из-под свободного уровня теплоносителя через кольцевую систему окон, образованных верхними частями лопаток подводящего устройства и горизонтальным кольцеобразным козырьком, ограничивающим окна сверху.

Документы, цитированные в отчете о поиске Патент 2013 года RU2473984C1

Шерстобитная машина 1929
  • Астахов А.Г.
SU24748A1
ГЛАВНЫЙ ЦИРКУЛЯЦИОННЫЙ НАСОСНЫЙ АГРЕГАТ 2009
  • Герасимов Владимир Сергеевич
  • Казанцев Родион Петрович
  • Комаров Александр Сергеевич
  • Никифоров Сергей Аркадьевич
  • Паутов Юрий Михайлович
  • Штацкий Владимир Александрович
  • Щуцкий Сергей Юрьевич
RU2418197C1
JP 63241497 А, 06.10.1988
РАНГОВЫЙ ИДЕНТИФИКАТОР 1999
  • Андреев Д.В.
RU2149454C1

RU 2 473 984 C1

Авторы

Безносов Александр Викторович

Бокова Татьяна Александровна

Боков Павел Андреевич

Казанцев Родион Петрович

Павлов Николай Николаевич

Паутов Юрий Михайлович

Шуцкий Сергей Юрьевич

Климов Николай Николаевич

Даты

2013-01-27Публикация

2011-05-12Подача