РЕАКТОРНАЯ УСТАНОВКА С РЕАКТОРОМ НА БЫСТРЫХ НЕЙТРОНАХ И СВИНЦОВЫМ ТЕПЛОНОСИТЕЛЕМ Российский патент 2015 года по МПК G21D1/00 

Описание патента на изобретение RU2545098C1

Изобретение относится к ядерной технике и предназначено для использования в энергетических установках с реактором на быстрых нейтронах и жидкометаллическим теплоносителем, преимущественно в виде расплавленного свинца или его сплава.

Перспективное развитие атомной энергетики связано с созданием энергетических реакторов на быстрых нейтронах, применение которых позволит решить принципиальные проблемы эффективного и безопасного использования ядерного топлива при замыкании ядерного топливного цикла и обеспечения экологической безопасности. В настоящее время ведется разработка проектов реакторов на быстрых нейтронах нового поколения с нитридным уран-плутониевым топливом и свинцовым теплоносителем. Такие реакторы имеют принципиальные преимущества по сравнению с реакторами на тепловых нейтронах, а также с реакторами на быстрых нейтронах с натриевым теплоносителем и могут быть положены в основу создания энергетических установок с высокой степенью надежности, безопасности и практически неограниченным топливообеспечением (The next generation of fast reactors. / E.O. Adamov, V.V. Orlov, A.I. Filin, V.N. Leonov, A.G. Sila-Novitsky, V.S. Smirnov, V.S. Tsikunov // Nuclear Engineering and Design. - 1997. - Vol.173, №1-3. - P.143-150).

Известны проектно-конструкторские проработки по реакторной установке бассейнового типа с интегрально-петлевой компоновкой основного оборудования на основе реактора на быстрых нейтронах с жидкометаллическим свинцовым теплоносителем, описанная в проекте опытно-демонстрационного реактора БРЕСТ-ОД-300 (Конструктивные и компоновочные решения основных узлов и оборудования реактора БРЕСТ-ОД-300. В.Н. Леонов, А.А. Пикапов, А.Г. Сила-Новицкий и др. ВАНТ, серия: Обеспечение безопасности АЭС, выпуск 4, Москва, ГУП НИКИЭТ, 2004 г., стр.65-72.

Установка включает железобетонную шахту с внутренней стальной облицовкой, блок корпусов реактора с верхним перекрытием, активную зону, систему исполнительных механизмов воздействия на реактивность активной зоны, блоки парогенераторов и главных циркуляционных насосов, систему массообменников и фильтров для очистки теплоносителя, систему перегрузки элементов активной зоны, систему контроля технологических параметров и другие вспомогательные системы. Блок корпусов реактора БРЕСТ-ОД-300 выполнен в виде центральной и четырех периферийных цилиндрических шахт с плоскими днищами, которые совместно с верхним перекрытием образуют границу первого контура реакторной установки, в котором циркулирует теплоноситель, обеспечивая теплоотвод от активной зоны, и формируется объем защитного газа, а также размещены внутриреакторные устройства и оборудование. Активная зона размещена в центральной шахте блока корпусов, а блоки парогенераторов размещаются в четырех периферийных шахтах, соединенных с центральной шахтой верхними и нижними патрубками. Каждый парогенератор выполнен в виде трубчатого теплообменника для нагрева воды (пара) закритических параметров, который погружен в поток свинцового теплоносителя, движущегося в межтрубном пространстве корпуса парогенератора сверху вниз. В случае разгерметизации труб и выхода пара в контур циркуляции свинцового теплоносителя предусматривается отключение парогенератора путем перекрытия трубопроводов питательной воды и острого пара по второму контуру. Циркуляция свинцового теплоносителя в реакторе БРЕСТ-ОД-300 осуществляется путем его перекачки циркуляционными насосами из шахты парогенератора на уровень напорной камеры реактора, из которой теплоноситель опускается до входной камеры активной зоны, поднимается и нагревается в активной зоне при контакте с твэлами тепловыделяющих сборок и затем поступает в общую камеру «горячего» теплоносителя. Далее теплоноситель перетекает во входные камеры и межтрубное пространство парогенераторов, охлаждается и поступает на вход циркуляционных насосов, а затем снова подается в напорную камеру реактора.

Описанная конструкция установки предназначена для создания опытного реактора БРЕСТ-ОД-300 и проверки технических решений, которые могут быть положены в основу создания энергетических реакторов нового поколения на быстрых нейтронах со свинцовым теплоносителем. В таких реакторах предусматривается использование интегрально-петлевой компоновки основного оборудования, которая характеризуется большими габаритами и значительной удельной массой используемого свинцового теплоносителя на единицу вырабатываемой мощности. Так, этот показатель для реактора БРЕСТ-1200 составляет от 1,4 м3/МВт и более, в зависимости от единичной мощности основного оборудования и компоновочных решений.

Известна ядерная энергетическая установка бассейнового типа с интегрально-петлевой компоновкой основного оборудования на основе реактора на быстрых нейтронах со свинцовым теплоносителем (Ru 2247435), которая принята за прототип. Установка включает реактор, размещенный в центральном баке, парогенераторы и циркуляционные насосы, размещенные в периферийных баках, а также систему обработки теплоносителя газовыми смесями для восстановления окислов свинца. Реактор, парогенераторы, циркуляционные насосы размещены под свободным уровнем жидкометаллического теплоносителя. Парогенераторы установки выполнены в виде трубчатого теплообменника, в котором в трубах подается вода (пар), а в межтрубном пространстве сверху вниз циркулирует свинцовый теплоноситель. В реакторной установке между свободным уровнем жидкометаллического теплоносителя и верхним перекрытием выполнена общая газовая полость, сообщенная с системой циркуляции и очистки газа.

Недостатком указанного технического решения является размещение оборудования с высоким внутренним давлением (парогенераторов) в периферийных баках, заполненных расплавленным свинцом. Это повышает вероятность возникновения аварий при разгерметизации труб парогенераторов и попадания воды (пара) в теплоноситель. Кроме того, интегрально-петлевая компоновка основного оборудования характеризуется высоким удельным объемом свинцового теплоносителя на единицу мощности реактора, что приводит к увеличению размеров реактора и капитальных затрат при создании реактора.

Задача изобретения состоит в совершенствовании конструкции реакторной установки на быстрых нейтронах со свинцовым теплоносителем, использовании новых компоновочных решений, снижении затрат на создание и эксплуатацию установки при обеспечении высокой степени ее безопасности при нормальной эксплуатации, а также при возникновении аварийных режимов.

Поставленная задача решается за счет технического результата изобретения - снижения удельного объема свинцового теплоносителя на единицу мощности реактора, размещения оборудования с высоким внутренним давлением (парогенератор) вне активной среды (свинцового теплоносителя).

Технический результат достигается тем, что в реакторной установке (включающей шахту реактора с верхним перекрытием, размещенный в шахте реактор с активной зоной, парогенераторы, циркуляционных насосы, циркуляционные трубопроводы, системы исполнительных механизмов и устройств для обеспечения пуска, эксплуатации и остановки реакторной установки) парогенераторы (так называемые обратные) выполнены в виде трубчатых теплообменников, в которых теплоноситель течет внутри труб, а вода-пар - в межтрубном пространстве, размещены в отдельных боксах и сообщены с шахтой реактора циркуляционными трубопроводами подъема и слива свинцового теплоносителя, парогенераторы и большая часть циркуляционных трубопроводов размещены выше уровня свинцового теплоносителя в шахте реактора, циркуляционные насосы размещены в шахте реактора на циркуляционных трубопроводах подъема "горячего" свинцового теплоносителя и предусмотрено техническое средство для обеспечения естественной циркуляции свинцового теплоносителя через активную зону реактора при отключении циркуляционных насосов.

В частном варианте выполнения техническое средство для обеспечения естественной циркуляции свинцового теплоносителя через активную зону реактора при отключении циркуляционных насосов выполнено в виде отверстий в обечайке, разделяющей опускной и подъемный участки контура циркуляции теплоносителя в шахте реактора.

В другом частном варианте выполнения средство для обеспечения естественной циркуляции свинцового теплоносителя снабжено устройством для минимизации перетекания теплоносителя через сквозные отверстия в обечайке при работе реактора в нормальном режиме. Это устройство выполнено в виде байпаса на подъемном участке циркуляционного трубопровода, который сообщен со сквозными отверстиями в обечайке и с опускным участком контура циркуляции теплоносителя в шахте реактора.

В другом частном варианте технического решения устройство для минимизации перетекания теплоносителя выполнено в виде вспомогательного насоса для перекачивания теплоносителя из подъемного участка в опускной участок контура циркуляции теплоносителя в шахте реактора.

В другом частном варианте выполнения установки на каждом парогенераторе установлено устройство сброса пара при повышении температуры теплоносителя выше допустимой.

В другом частном варианте выполнения реакторной установки газовые полости каждого бокса парогенератора снабжены устройствами для аварийного сброса пара.

Сущность изобретения состоит в создании реакторной установки с тяжелым теплоносителем с полуинтегральной компоновкой, при которой основное оборудование, включая циркуляционные насосы, размещено в шахте реактора, выбраны парогенераторы обратного типа и размещены в отдельных боксах выше свободного уровня свинца в шахте реактора. Такое выполнение установки позволяет повысить надежность и безопасность реакторной установки при нормальной эксплуатации и при возникновении аварийных режимов, а также уменьшить объем свинцового теплоносителя, что снизит капитальные затраты при сооружении энергоблока.

На фиг.1 представлена схема реакторной установки в соответствии с предлагаемым техническим решением.

На фиг.2 представлена схема выполнения первого варианта устройства для минимизации перетекания теплоносителя при работе установки в нормальном режиме через отверстия, предназначенные для обеспечения естественной циркуляции теплоносителя при отключенных циркуляционных насосах.

На фиг.3 представлена схема второго варианта выполнения устройства для минимизации перетекания теплоносителя при работе установки в нормальном режиме через отверстия, предназначенные для обеспечения естественной циркуляции теплоносителя при отключенных циркуляционных насосах.

Реакторная установка включает шахту реактора 1 с верхним перекрытием 2, размещенный в шахте 1 реактор 3 с активной зоной 4, парогенераторы 5, размещенные в отдельных боксах 6, циркуляционные насосы 7, циркуляционные трубопроводы 8 и 9, а также системы исполнительных механизмов и устройств для обеспечения пуска, эксплуатации и аварийной остановки реактора (не показаны). Парогенераторы 5, выполненные в виде трубчатых теплообменников, сообщены с шахтой реактора 1 циркуляционными трубопроводами подъема 8 и слива 9 свинцового теплоносителя 10 и размещены выше «холодного» уровня 11 теплоносителя. Рабочие колеса циркуляционных насосов 7 размещены в шахте 1 реактора ниже «горячего» уровня 12 свинцового теплоносителя 10.

Парогенераторы 5 выполнены таким образом, что свинцовый теплоноситель движется в трубках парогенератора сверху вниз. Вода второго контура поступает в парогенератор через нижний патрубок 27, и пар отводится через верхний патрубок 28.

В частном варианте выполнения установка снабжена техническим средством для обеспечения естественной циркуляции свинцового теплоносителя через активную зону реактора 4 при отключении циркуляционных насосов 7. Это средство может быть выполнено, например, в виде сквозных отверстий 13 в обечайке 14, разделяющей подъемный 15 и опускной 16 участки контура циркуляции свинцового теплоносителя в шахте 1 реактора.

В другом частном варианте исполнения техническое средство выполнено в виде устройства для минимизации перетекания теплоносителя через сквозные отверстия 13 в обечайке 14 при работе реактора в нормальном режиме. Это устройство может быть выполнено (фиг.2) в виде байпаса 17, соединяющего подъемный участок циркуляционного трубопровода 8 с подъемным участком 15 контура циркуляции через отверстия 24 и с опускным участком 16 контура циркуляции через отверстия 13.

Устройство для минимизации перетекания свинцового теплоносителя может быть также выполнено (фиг.3) в виде вспомогательного насоса 18 для перекачивания теплоносителя из подъемного участка 15 в опускной участок 16 контура циркуляции теплоносителя в шахте 1 реактора.

На каждом парогенераторе 5 установлено устройство 19 для сброса пара при повышении температуры теплоносителя выше допустимой, а также устройство 20 для сброса пара из бокса 6 в атмосферу. Газовая полость 21 шахты 1 реактора и газовые полости 22 боксов 6 парогенераторов 5 разделены между собой герметичным устройством 23.

Циркуляция свинцового теплоносителя в первом контуре реакторной установки осуществляется следующим образом. Теплоноситель из подъемного участка 15 реактора с помощью циркуляционных насосов 7 перекачивается по подъемным циркуляционным трубопроводам 8 в верхнюю часть парогенератора 5, а затем по сливным циркуляционным трубам 9 поступает в опускной участок 16 контура циркуляции свинцового теплоносителя в шахте 1 реактора. Из опускного участка циркуляции 16 теплоноситель поступает в активную зону 4, где нагревается при контакте с поверхностью твэлов. Далее теплоноситель поступает в циркуляционные насосы 7, замыкая контур циркуляции в нормальном режиме работы установки.

Количество свинцового теплоносителя в шахте 1 реактора и парогенераторах 5 рассчитывается таким образом, чтобы в случае разгерметизации циркуляционных трубопроводов 8 и 9 или нарушении герметичности парогенераторов уровень свинцового теплоносителя в шахте 1 реактора оставался бы достаточным для охлаждения активной зоны 4 реактора в режиме естественной циркуляции.

При отключении циркуляционных насосов 7 теплоноситель полностью сливается из парогенераторов 5 в опускной участок 16 контура циркуляции теплоносителя в шахте 1 реактора и поступает в активную зону 4, а затем в подъемный участок 15 контура циркуляции. При этом перепад между «горячим» 11 и «холодным» 12 уровнями теплоносителя уменьшается, и теплоноситель через сквозные отверстия 13 в обечайке 14 поступает из подъемного участка 15 контура циркуляции в опускной участок 16, замыкая контур естественной циркуляции свинцового теплоносителя в аварийном режиме.

Для компенсации перетекания теплоносителя через отверстия 13 при работе установки в нормальном режиме используется устройство (фиг.2) в виде байпаса 17, который сообщает подъемный участок циркуляционного трубопровода 8 с участком 15 контура циркуляции через отверстия 24 и с опускным участком 16 контура циркуляции через отверстия 13. При работе циркуляционного насоса 7 большая часть расхода теплоносителя через отверстия 24 в трубопроводе байпаса 17 поступает на участок 15, а небольшая часть расхода перетекает в опускной участок 16 контура циркуляции через отверстия 13. При отключении циркуляционных насосов 7 и выравнивании «холодного» 11 и «горячего» 12 уровней формируется естественная циркуляция теплоносителя.

Устройство для компенсации перетекания теплоносителя, представленное на фиг.3, может быть также выполнено в виде вспомогательного насоса 18 и трубопровода 25, который сообщает подъемный 15 и опускной 16 участки контура циркуляции теплоносителя через отверстие 13. При работе насоса 18 в трубопроводе 25 создается напор, препятствующий перетеканию теплоносителя из опускного участка 16 в подъемный участок 15 контура циркуляции. Насосы 18 могут быть выполнены с маховыми массами, что способствует формированию естественной циркуляции теплоносителя при отключении циркуляционных насосов 7.

Полуинтегральная компоновка установки и размещение обратных парогенераторов 5 выше уровня свинцового теплоносителя в шахте 1 позволяет полностью слить свинцовый теплоноситель в реактор, что защищает установку от замораживания теплоносителя при авариях с разрывом паропроводов второго контура, а также существенно облегчает отмывку от отложений на трубках парогенераторов.

Использование парогенераторов обратного типа 5 в реакторной установке существенно повышает их надежность, так как трубки 26 парогенераторов в этом случае нагружены внешним давлением теплоносителя второго контура (воды-пара). При этом, в случае аварийного повышения температуры свинцового теплоносителя на входе в парогенераторы 5, происходит потеря устойчивости трубок, но не их разрушение (как в прямом теплообменнике), а их смятие, что обеспечивает практическую невозможность выхода активного теплоносителя за пределы 1 контура, а также поступление воды-пара в контур циркуляции свинцового теплоносителя. Парогенераторы 5 снабжены активными и пассивными устройствами сброса пара, что ограничивает последствия аварий и исключает возможность выброса в окружающую среду радиоактивных веществ.

Таким образом, практическое использование предложенной конструкции реакторной установки позволит существенно уменьшить объем свинцового теплоносителя и повысить надежность и безопасность реакторной установки при нормальной эксплуатации, а также при возникновении аварийных режимов.

Похожие патенты RU2545098C1

название год авторы номер документа
Ядерный реактор с тяжелым жидкометаллическим теплоносителем 2021
  • Дедуль Александр Владиславович
  • Степанов Владимир Сергеевич
  • Тошинский Георгий Ильич
  • Арсеньев Юрий Александрович
  • Комлев Олег Геннадьевич
  • Вахрушин Михаил Петрович
  • Григорьев Сергей Александрович
  • Самкотрясов Сергей Владимирович
RU2756230C1
МЕТАЛЛОБЕТОННЫЙ КОРПУС ЯДЕРНОГО РЕАКТОРА С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ 2016
  • Коротков Геннадий Васильевич
  • Сивков Александр Николаевич
  • Романов Марат Ильгизарович
  • Зайцев Борис Иванович
  • Ходасевич Константин Борисович
  • Щекин Михаил Валерьевич
RU2634426C1
РЕАКТОРНАЯ УСТАНОВКА НА БЫСТРЫХ НЕЙТРОНАХ С ПАССИВНОЙ СИСТЕМОЙ ОХЛАЖДЕНИЯ АКТИВНОЙ ЗОНЫ 2021
  • Узиков Виталий Алексеевич
  • Узикова Ирина Витальевна
  • Сулейманов Ильдар Радикович
RU2762391C1
ЯДЕРНЫЙ РЕАКТОР ПРЕДЕЛЬНОЙ БЕЗОПАСНОСТИ 1989
  • Крашенинников Д.П.
SU1831171A1
ПАРОГЕНЕРАТОР ОБРАТНОГО ТИПА ДЛЯ РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ СО СВИНЦОВЫМ ТЕПЛОНОСИТЕЛЕМ 2018
  • Васильев Сергей Викторович
  • Андронычева Виктория Федоровна
RU2706801C1
Способ организации естественной циркуляции жидкометаллического теплоносителя ядерного реактора на быстрых нейтронах 2017
  • Афремов Дмитрий Александрович
  • Сафронов Денис Викторович
  • Хижняк Евгения Сергеевна
  • Никель Кирилл Альбертович
  • Романова Наталья Викторовна
RU2691755C2
ЯДЕРНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2006
  • Безносов Александр Викторович
  • Молодцов Антон Анатольевич
  • Бокова Татьяна Александровна
  • Степанов Владимир Сергеевич
  • Климов Николай Николаевич
  • Болванчиков Сергей Николаевич
RU2313143C1
РЕАКТОРНАЯ УСТАНОВКА 2012
  • Морозов Олег Николаевич
RU2522139C2
ПАССИВНАЯ СИСТЕМА ОХЛАЖДЕНИЯ ЯДЕРНОГО РЕАКТОРА 2021
  • Узиков Виталий Алексеевич
  • Узикова Ирина Витальевна
RU2769102C1
СИСТЕМА ЗАЩИТЫ ЗАЩИТНОЙ ОБОЛОЧКИ РЕАКТОРНОЙ УСТАНОВКИ ВОДО-ВОДЯНОГО ТИПА 1995
  • Сидоров А.С.
  • Носенко Г.Е.
  • Нигматулин Б.И.
  • Клейменова Г.И.
RU2106026C1

Иллюстрации к изобретению RU 2 545 098 C1

Реферат патента 2015 года РЕАКТОРНАЯ УСТАНОВКА С РЕАКТОРОМ НА БЫСТРЫХ НЕЙТРОНАХ И СВИНЦОВЫМ ТЕПЛОНОСИТЕЛЕМ

Изобретение относится к ядерной технике и предназначено для использования в энергетических установках с реактором на быстрых нейтронах c теплоносителем в виде свинца или его сплава. Установка включает шахту реактора с верхним перекрытием, размещенный в шахте реактор с активной зоной, парогенераторы, циркуляционных насосы, циркуляционные трубопроводы, системы исполнительных механизмов и устройств для обеспечения пуска, эксплуатации и остановки реакторной установки. Парогенераторы выполнены в виде трубчатых теплообменников, в которых свинцовый теплоноситель течет внутри труб, а вода-пар - в межтрубном пространстве, парогенераторы размещены в отдельных боксах и сообщены с шахтой реактора циркуляционными трубопроводами подъема и слива свинцового теплоносителя. Парогенераторы и большая часть циркуляционных трубопроводов размещены выше уровня свинцового теплоносителя в шахте реактора, циркуляционные насосы размещены в шахте реактора на циркуляционных трубопроводах подъема горячего свинцового теплоносителя, обеспечена естественная циркуляция свинцового теплоносителя при отключении циркуляционных насосов. Технический результат - снижение удельного объема свинцового теплоносителя на единицу мощности реактора. 5 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 545 098 C1

1. Реакторная установка, включающая шахту с верхним перекрытием, размещенный в шахте реактор с активной зоной, парогенераторы, главные циркуляционные насосы, главные циркуляционные трубопроводы, системы исполнительных механизмов и устройств для обеспечения пуска, эксплуатации и аварийной остановки реактора, отличающаяся тем, что выбраны парогенераторы обратного типа и размещены в отдельных боксах выше уровня свинцового теплоносителя в шахте реактора, парогенераторы сообщены с шахтой реактора циркуляционными трубопроводами подъема и слива свинцового теплоносителя, главные циркуляционные насосы размещены в шахте реактора на главных циркуляционных трубопроводах подъема горячего свинцового теплоносителя, в шахте реактора размещено устройство для обеспечения естественной циркуляции свинцового теплоносителя через активную зону при отключении циркуляционных насосов.

2. Реакторная установка по п.1, отличающаяся тем, что устройство для обеспечения естественной циркуляции свинцового теплоносителя выполнено в виде отверстий в обечайке, разделяющей опускной и подъемный участки контура циркуляции теплоносителя в шахте реактора и средства для минимизации перетекания теплоносителя через упомянутые отверстия при работе установки в нормальном режиме.

3. Реакторная установка по п.2, отличающаяся тем, что средство для минимизации перетекания теплоносителя выполнено в виде байпаса на подъемном участке циркуляционного трубопровода, сообщенного с опускным участком контура циркуляции теплоносителя в шахте реактора.

4. Реакторная установка по п.2, отличающаяся тем, что средство для минимизации перетекания теплоносителя выполнено в виде вспомогательных насосов с трубопроводами, которые сообщают подъемный и опускной участки контура циркуляции теплоносителя через отверстия в обечайке.

5. Реакторная установка по п.1, отличающаяся тем, что на каждом парогенераторе установлено устройство сброса пара при повышении температуры теплоносителя выше допустимой.

6. Реакторная установка по п.1 или 5, отличающаяся тем, что каждый бокс парогенератора снабжен устройством для аварийного сброса пара.

Документы, цитированные в отчете о поиске Патент 2015 года RU2545098C1

КОМБИНИРОВАННАЯ ТЕРАПИЯ РАКА ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ С ИСПОЛЬЗОВАНИЕМ АНТИГЕННОГО ПЕПТИДА И ХИМИОТЕРАПЕВТИЧЕСКОГО СРЕДСТВА 2008
  • Ямауе Хироки
RU2472522C2
RU2003121666 A, 10.01.2005
РЕАКТОРНАЯ УСТАНОВКА 2011
  • Безносов Александр Викторович
  • Бокова Татьяна Александровна
  • Боков Павел Андреевич
  • Казанцев Родион Петрович
  • Павлов Николай Николаевич
  • Паутов Юрий Михайлович
  • Шуцкий Сергей Юрьевич
  • Климов Николай Николаевич
RU2473984C1
JP2002257967 A, 11.09.2002

RU 2 545 098 C1

Авторы

Кубинцев Борис Борисович

Леонов Виктор Николаевич

Лопаткин Александр Викторович

Чернобровкин Юрий Васильевич

Даты

2015-03-27Публикация

2014-01-31Подача