МНОГОКАНАЛЬНЫЙ ПОЛУПРОВОДНИКОВЫЙ ДЕТЕКТОР ДЛЯ РЕГИСТРАЦИИ АЛЬФА-ЧАСТИЦ В НЕЙТРОННОМ ГЕНЕРАТОРЕ СО СТАТИЧЕСКИМ ВАКУУМОМ И ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЛЯ НЕГО Российский патент 2013 года по МПК G01T1/24 

Описание патента на изобретение RU2476907C2

Изобретение относится к области измерения излучения физических частиц с помощью полупроводниковых детекторов и может быть использовано при создании многоэлементных детекторов заряженных частиц на основе полупроводниковых кристаллов, способных работать внутри нейтронного генератора со статическим вакуумом.

Наиболее близким к предлагаемому изобретению техническим решением, принятым за прототип, является полупроводниковый детектор для регистрации сопутствующих нейтронам заряженных частиц (альфа-частиц) в нейтронном генераторе со статическим вакуумом - патент РФ №2247411, включающий полупроводниковый регистрирующий элемент, размещенный в диэлектрическом корпусе перпендикулярно потоку α-частиц, закрытый как со стороны потока заряженных частиц, так и с противоположной стороны слоями металла, электрически соединенными с токоотводами, при этом токоотвод со стороны потока заряженных частиц выполнен в виде жесткой прижимной металлической пластины с отверстиями напротив чувствительной зоны полупроводникового регистрирующего элемента, прикрепленной к диэлектрическому корпусу, а токоотводы с противоположной стороны выполнены в виде жестких металлических пластин, поджатых пружинными элементами к полупроводниковому регистрирующему элементу, при этом диэлектрический корпус выполнен из керамики. Предложен также конструктивный вариант объединения нескольких полупроводниковых детекторов в один корпус. Соответственно чувствительный элемент данного детектора состоит из отдельных полупроводниковых кристаллов (пластин) с контактами, размещенными с обеих сторон кристалла и поджатыми пружинными элементами для осуществления электрического контакта и снабженными токоотводами.

Общими существенными признаками всего детектора являются следующие: многоэлементный полупроводниковый детектор для регистрации альфа-частиц в нейтронном генераторе со статическим вакуумом, включающий корпус детектора, пластину полупроводникового кристалла, размещенную перпендикулярно потоку сопутствующих нейтронам альфа-частиц, регистрирующие элементы с электрическими контактами и токоотводами, размещенные на обеих сторонах пластины полупроводникового кристалла.

Общими существенными признаками чувствительного элемента детектора являются следующие: чувствительный элемент многоэлементного полупроводникового детектора для регистрации альфа-частиц в нейтронном генераторе со статическим вакуумом включает пластину полупроводникового кристалла, регистрирующие элементы с электрическими контактами и токоотводами, размещенные на обеих сторонах пластины полупроводникового кристалла.

Известно, что механические пружинящие контакты не являются самыми надежными и малошумящими. Кроме того, общий контакт пластины полупроводникового кристалла с металлической частью корпуса создает проблему механических напряжений для полупроводникового кристалла детектора при температурном отжиге нейтронного генератора перед запаиванием до +400° в течение 24 часов. Для данной конструкции детектора из-за ограничения числа выводимых контактов из статического вакуума нейтронного генератора сложно сделать число чувствительных элементов более 10-20. В связи с выполнением окон в прижимной металлической пластине для проникновения альфа-частиц в каждый отдельный чувствительный элемент детектора (прижимная пластина также играет роль фиксатора позиции для каждого чувствительного элемента), между ними остается значительная площадь нечувствительной области. Все это существенно снижает надежность и чувствительность детектора в части регистрации заряженных частиц.

Предлагаемым изобретением решается техническая задача существенного повышения надежности детектора и его чувствительности за счет уменьшения размеров областей облучения объекта контроля потоками меченых нейтронов, сформированными каждым из элементов (пикселей) альфа-детектора, а также устранения мертвых зон между чувствительными элементами детектора. Регистрация гамма-квантов характеристического излучения, возникшего в результате взаимодействия потока меченых нейтронов (образующихся в бинарной dt-реакции, протекающей на тритиевой мишени нейтронного генератора) с ядрами облучаемого образца, в совпадениях с альфа-частицами (сопровождающими вылет нейтрона) позволяет идентифицировать искомое вещество. Уменьшение размеров области облучения объекта за счет уменьшения размеров каждого соответствующего пикселя альфа-детектора позволяет соответственно идентифицировать меньшую массу скрытого вещества в данном объекте.

Для достижения данного технического результата в многоэлементном полупроводниковом детекторе для регистрации альфа-частиц в нейтронном генераторе со статическим вакуумом, включающем корпус детектора, пластину полупроводникового кристалла, размещенную перпендикулярно потоку альфа-частиц, регистрирующие элементы с электрическими контактами и токоотводами, размещенные на обеих сторонах пластины полупроводникового кристалла, в отличие от прототипа, пластина полупроводникового кристалла выполнена с возможностью размещения на обеих ее сторонах всех регистрирующих элементов с электрическими контактами и токоотводами, закреплена по периметру на керамической плате, в центральной части которой выполнено отверстие для попадания альфа-частиц на регистрирующие элементы; керамическая плата закреплена на корпусе, в котором также выполнено отверстие для попадания альфа-частиц на регистрирующие элементы; регистрирующие элементы сделаны в виде полос, выполненных на пластине полупроводникового кристалла методом ионного легирования, а электрические контакты выполнены методом напыления металла на регистрирующие элементы; при этом полосы регистрирующих элементов на одной стороне пластины полупроводникового кристалла параллельны друг другу и перпендикулярны направлению полос регистрирующих элементов на другой стороне пластины полупроводникового кристалла; на керамической плате выполнены металлизированные контактные площадки для закрепления токоотводов от электрических контактов регистрирующих элементов и токоотводов наружу нейтронного генератора; при этом токоотводы закреплены на электрических контактах регистрирующих элементов и металлизированных контактных площадках керамической платы методом ультразвуковой сварки, а токоотводы от керамической платы для вывода наружу нейтронного генератора выполнены в виде полосок из металлической фольги и закреплены на контактных площадках керамической платы с помощью болтов.

Для достижения данного технического результата в чувствительном элементе многоэлементного полупроводникового детектора для регистрации альфа-частиц в нейтронном генераторе со статическим вакуумом, включающем пластину полупроводникового кристалла, регистрирующие элементы с электрическими контактами и токоотводами, размещенные на обеих сторонах пластины полупроводникового кристалла, в отличие от прототипа пластина полупроводникового кристалла выполнена с возможностью размещения на обеих ее сторонах всех регистрирующих элементов с электрическими контактами и токоотводами; регистрирующие элементы сделаны в виде полос, выполненных на пластине полупроводникового кристалла методом ионного легирования, а электрические контакты выполнены методом напыления металла на регистрирующие элементы; при этом полосы регистрирующих элементов на одной стороне пластины полупроводникового кристалла параллельны друг другу и перпендикулярны направлению полос регистрирующих элементов на другой стороне пластины полупроводникового кристалла; при этом токоотводы закреплены на электрических контактах регистрирующих элементов методом ультразвуковой сварки.

Дополнительно, в самом чувствительном элементе и, соответственно, детекторе, для исключения омической связи между полосами регистрирующих элементов, р+-полосы регистрирующих элементов электроизолированы между собой обратно смещенными (р-n)-переходами, образованными между регистрирующими элементами р+типа проводимости и объемом детектора n-типа проводимости, а n+-полосы регистрирующих элементов электроизолированы между собой обратно смещенными (р-n)-переходами, образованными между разделительными полосами р+-типа проводимости и объемом детектора n-типа проводимости.

Отличительными признаками предлагаемого технического решения в части всего детектора от известного (прототипа) являются следующие: пластина полупроводникового кристалла выполнена с возможностью размещения на обеих ее сторонах всех регистрирующих элементов с электрическими контактами и токоотводами, закреплена по периметру на керамической плате, в центральной части которой выполнено отверстие для попадания альфа-частиц на регистрирующие элементы; керамическая плата закреплена на корпусе, в котором также выполнено отверстие для попадания альфа-частиц на регистрирующие элементы; регистрирующие элементы сделаны в виде полос, выполненных на пластине полупроводникового кристалла методом ионного легирования, а электрические контакты выполнены методом напыления металла на регистрирующие элементы; при этом полосы регистрирующих элементов на одной стороне пластины полупроводникового кристалла параллельны друг другу и перпендикулярны направлению полос регистрирующих элементов на другой стороне пластины полупроводникового кристалла; на керамической плате выполнены металлизированные контактные площадки для закрепления токоотводов от электрических контактов регистрирующих элементов и токоотводов наружу нейтронного генератора; при этом токоотводы закреплены на электрических контактах регистрирующих элементов и металлизированных контактных площадках керамической платы методом ультразвуковой сварки, а токоотводы от керамической платы для вывода наружу нейтронного генератора выполнены в виде полосок из металлической фольги и закреплены на контактных площадках керамической платы с помощью болтов.

Отличительными признаками предлагаемого технического решения в части чувствительного элемента от известного (прототипа) являются следующие: пластина полупроводникового кристалла выполнена с возможностью размещения на обеих ее сторонах всех регистрирующих элементов с электрическими контактами и токоотводами; регистрирующие элементы сделаны в виде полос, выполненных на пластине полупроводникового кристалла методом ионного легирования, а электрические контакты выполнены методом напыления металла на регистрирующие элементы; при этом полосы регистрирующих элементов на одной стороне пластины полупроводникового кристалла параллельны друг другу и перпендикулярны направлению полос регистрирующих элементов на другой стороне пластины полупроводникового кристалла; при этом токоотводы закреплены на электрических контактах регистрирующих элементов методом ультразвуковой сварки.

Дополнительно, в самом чувствительном элементе и соответственно детекторе, р+-полосы регистрирующих элементов электроизолированы между собой обратно смещенными (p-n)-переходами, образованными между регистрирующими элементами р+типа проводимости и объемом детектора n-типа проводимости, а n+-полосы регистрирующих элементов электроизолированы между собой обратно смещенными (p-n)-переходами, образованными между разделительными полосами р+-типа проводимости и объемом детектора n-типа проводимости.

Благодаря данным отличительным признакам вместе с известными из прототипа достигается следующий технический результат: повышаются надежность детектора и улучшаются основные параметры детектора (координатная точность, временное разрешение); устройство позволяет регистрировать в нейтронных генераторах со статическим вакуумом координаты альфа-частицы с точностью, определяемой размером одного элемента (пикселя), который представляет собой область перекрытия полос-стрипов - регистрирующих элементов, расположенных на противоположных сторонах пластины полупроводникового кристалла и образующих прямоугольную систему координат (следует заметить, что конструкция детектора, в принципе, позволяет использовать регистрирующие элементы в виде прямоугольников, ромбов, секторов, сегментов и т.д.); считывание быстрых сигналов при регистрации координат альфа-частицы производится одновременно с сигнальных элементов, расположенных на разных сторонах полупроводникового кристалла; данная конструкция позволяет создавать детекторы альфа-частиц для нейтронных генераторов со статическим вакуумом с числом элементов детектора n2 > 256, где n - количество стрипов на одной стороне кристалла, при этом необходимое число каналов электроники регистрации меньше числа элементов детектора и равно 2n; конструкция устройства регистрации позволяет ориентировать полупроводниковый детектор любой стороной относительно тритиевой мишени в нейтронном генераторе; за счет выполнения всех регистрирующих элементов на одной общей пластине полупроводникового кристалла и ультразвуковой сварки контактов существенно повышается надежность устройства регистрации альфа-частиц после сборки и температурного отжига корпуса нейтронного генератора до температуры +400° в течение 24 часов (отсутствуют пружинящие контакты и полупроводниковая пластина не имеет механического и электрического контакта с металлическим корпусом).

Предлагаемое техническое решение может найти применение в различных системах проверки наличия и идентификации скрытых веществ, в том числе малых размеров (размеров пикселя, образованного пересечением полос регистрирующих элементов). Данная конструкция детектора может быть применена для детектирования и других заряженных частиц.

Предлагаемое техническое решение поясняется фиг.1 и 2.

На фиг.1 изображен разрез нейтронного генератора по тритиевой мишени и полупроводниковому детектору α-частиц.

На фиг.2 показана структура чувствительного элемента детектора.

Изображенный на фиг.1 нейтронный генератор (НГ) содержит корпус 1, размещенную в нем тритиевую мишень 2, многоэлементный полупроводниковый детектор для регистрации сопутствующих нейтронам альфа-частиц, включающий корпус детектора 3 (как правило, стальной), на котором с помощью болтов закреплена керамическая плата 4 (имеющая близкий с пластиной полупроводникового кристалла 5 по значению коэффициент температурного расширения), на которой в свою очередь также с помощью болтов закреплена пластина полупроводникового кристалла 5, в которой для этого вне чувствительной зоны выполнены отверстия под болты. Регистрирующие элементы 6 сделаны в виде полос (стрипов), выполненных на пластине полупроводникового кристалла методом ионного легирования (имплантации). Электрические контакты 11 на фиг.2 выполнены методом напыления металла (алюминия) на регистрирующие элементы 6. Полосы регистрирующих элементов 6 на одной стороне пластины полупроводникового кристалла 5 параллельны друг другу и перпендикулярны направлению полос регистрирующих элементов 6 на другой стороне пластины полупроводникового кристалла 5. На керамической плате 4 выполнены металлизированные контактные площадки 7 для закрепления токоотводов 8 от регистрирующих элементов и токоотводов 9 от детектора наружу. Токоотводы 8 закреплены на регистрирующих элементах 6 и металлизированных контактных площадках 7 методом ультразвуковой сварки. Токоотводы 9 от детектора наружу закреплены на металлизированных контактных площадках 7 с помощью болтов и выведены из объема нейтронного генератора через коваровые выводы 10.

Таким образом, регистрирующие элементы 6 на пластине полупроводникового кристалла 5 образуют на одной стороне р+-стрипы (X-координата), а на другой стороне - n+-стрипы (У-координата). Создание р+ и n+-стрипов делается методом ионной имплантации (легирования) соответственно ионов бора и фосфора через окна в маске из окисла (SiO2). Обозначения стрипов р+ и n+-обозначают сильно легированные области (стрипы) на высокоомной кремниевой пластине 5 n-типа проводимости. Для того, чтобы n+-полосы регистрирующих элементов были электроизолированы между собой, создаются р+-разделительные стрипы 12, которые образуют обратно смещенные (р-n)-переходы между разделительными стрипами р+-типа проводимости 12 и объемом детектора n-типа проводимости 5.

При пересечении Х- и У-стрипов в прямоугольной системе координат образуются квадраты, это и есть элементы детектора, которые определяют положение попавшей в детектор альфа-частицы. Количество элементов детектора равно произведению C=k×n, где: n - число р+-стрипов (X), k - число n+-стрипов (Y). Количество контактов детектора (каналов электроники) равно сумме (k+n). Например, для двухстороннего детектора с числом стрипов по 16 (на каждой стороне) количество элементов будет равно 16×16=256, а число выводимых контактов токоотводов 9 из объема НГ будет составлять 32.

Предлагаемое устройство работает следующим образом.

Альфа-частицы, образующиеся в результате бинарной ядерной реакции d+t→α (3.5 МэВ)+n (14.1 МэВ) в тритиевой мишени 2 и попадающие в пластину полупроводникового кристалла 5, создают заряд ионизации, пропорционально потерям энергии. В результате дрейфа заряда ионизации в электрическом поле детектора на соответствующих р+ и n+-стрипах регистрирующих элементов 6 будут одновременно индуцироваться сигналы противоположной полярности (на р+-стрипах - положительная полярность, на n+-стрипах - отрицательная полярность). Электрические сигналы от альфа-частицы, образовавшиеся на одном из Х-стрипов и на одном из У-стрипов, выводятся из вакуумного объема нейтронного генератора через коваровые контакты 10. Коваровые контакты 10 соединены со входами предварительных усилителей и после усиления сигналы с Х- и У-стрипов поступают на регистрирующую электронику, где происходит амплитудный и временной анализ сигналов для каждого стрипа, а также организуется логика совпадений для определения координат данной альфа частицы. Совпадение сигнала, пришедшего с одного из Х-стрипов, с сигналом, пришедшим с одного из У-стрипов, однозначно определяют Х- и У-координаты и время альфа-частицы, и соответственно, направление и время вылета меченого нейтрона из нейтронного генератора.

Похожие патенты RU2476907C2

название год авторы номер документа
ПЕРЕНОСНОЙ ОБНАРУЖИТЕЛЬ ОПАСНЫХ СКРЫТЫХ ВЕЩЕСТВ 2011
  • Быстрицкий Вячеслав Михайлович
  • Замятин Николай Иванович
  • Садовский Андрей Борисович
  • Сапожников Михаил Григорьевич
  • Слепнёв Вячеслав Михайлович
RU2476864C1
МОБИЛЬНОЕ УСТРОЙСТВО ДЛЯ ИДЕНТИФИКАЦИИ СКРЫТЫХ ВЕЩЕСТВ (ВАРИАНТЫ) 2011
  • Быстрицкий Вячеслав Михайлович
  • Замятин Николай Иванович
  • Сапожников Михаил Григорьевич
  • Слепнёв Вячеслав Михайлович
RU2457469C1
ПЕРЕНОСНОЕ УСТРОЙСТВО ДЛЯ ИДЕНТИФИКАЦИИ СКРЫТЫХ ВЕЩЕСТВ (ВАРИАНТЫ) 2011
  • Быстрицкий Вячеслав Михайлович
  • Замятин Николай Иванович
  • Зубарев Евгений Валерьевич
  • Краснопёров Алексей Владимирович
  • Рапацкий Владимир Леонидович
  • Рогов Юрий Николаевич
  • Садовский Андрей Борисович
  • Саламатин Александр Васильевич
  • Сапожников Михаил Григорьевич
  • Слепнёв Вячеслав Михайлович
RU2442146C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПРОФИЛЯ НЕЙТРОННОГО ПУЧКА (ПУЧКОВ) 2015
  • Быстрицкий Вячеслав Михайлович
  • Слепнев Вячеслав Михайлович
  • Замятин Николай Иванович
RU2593433C1
ПОЛУПРОВОДНИКОВЫЙ ДЕТЕКТОР ДЛЯ РЕГИСТРАЦИИ СОПУТСТВУЮЩИХ НЕЙТРОНАМ ЗАРЯЖЕННЫХ ЧАСТИЦ В НЕЙТРОННОМ ГЕНЕРАТОРЕ СО СТАТИЧЕСКИМ ВАКУУМОМ 2004
  • Кузнецов А.В.
  • Евсенин А.В.
RU2247411C1
ПОЛУПРОВОДНИКОВЫЙ ДЕТЕКТОР ДЛЯ РЕГИСТРАЦИИ СОПУТСТВУЮЩИХ НЕЙТРОНАМ ЗАРЯЖЕННЫХ ЧАСТИЦ В НЕЙТРОННОМ ГЕНЕРАТОРЕ СО СТАТИЧЕСКИМ ВАКУУМОМ 2013
  • Кузнецов Андрей Викторович
  • Осетров Олег Игоревич
  • Горшков Игорь Юрьевич
RU2529054C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ АЛМАЗОВ В КИМБЕРЛИТЕ 2013
  • Быстрицкий Вячеслав Михайлович
  • Замятин Николай Иванович
  • Рогов Юрий Николаевич
  • Сапожников Михаил Григорьевич
  • Слепнёв Вячеслав Михайлович
  • Никитин Геннадий Маркович
  • Белоцерковский Сергей Ремович
RU2521723C1
МОБИЛЬНЫЙ ОБНАРУЖИТЕЛЬ ОПАСНЫХ СКРЫТЫХ ВЕЩЕСТВ (ВАРИАНТЫ) 2013
  • Быстрицкий Вячеслав Михайлович
  • Замятин Николай Иванович
  • Сапожников Михаил Григорьевич
  • Слепнёв Вячеслав Михайлович
RU2524754C1
ДЕТЕКТОР БЫСТРЫХ НЕЙТРОНОВ 2013
  • Бритвич Геннадий Иванович
  • Кольцов Геннадий Иосифович
  • Диденко Сергей Иванович
  • Чубенко Александр Поликарпович
  • Черных Алексей Владимирович
  • Черных Сергей Владимирович
  • Барышников Федор Михайлович
  • Свешников Юрий Николаевич
  • Мурашев Виктор Николаевич
RU2532647C1
ДОСМОТРОВЫЙ КОМПЛЕКС ОБНАРУЖЕНИЯ ОПАСНЫХ СКРЫТЫХ ВЕЩЕСТВ (ВАРИАНТЫ) 2013
  • Быстрицкий Вячеслав Михайлович
  • Замятин Николай Иванович
  • Сапожников Михаил Григорьевич
  • Слепнёв Вячеслав Михайлович
RU2549680C2

Иллюстрации к изобретению RU 2 476 907 C2

Реферат патента 2013 года МНОГОКАНАЛЬНЫЙ ПОЛУПРОВОДНИКОВЫЙ ДЕТЕКТОР ДЛЯ РЕГИСТРАЦИИ АЛЬФА-ЧАСТИЦ В НЕЙТРОННОМ ГЕНЕРАТОРЕ СО СТАТИЧЕСКИМ ВАКУУМОМ И ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЛЯ НЕГО

Изобретение относится к области измерения излучения физических частиц с помощью полупроводниковых детекторов и может быть использовано при создании многоэлементных детекторов заряженных частиц на основе полупроводниковых кристаллов. Технический результат - повышение надежности детектора и его чувствительности. Сущность изобретения заключается в том, что в многоэлементном полупроводниковом детекторе для регистрации альфа-частиц в нейтронном генераторе со статическим вакуумом, включающем корпус детектора, пластину полупроводникового кристалла, размещенную перпендикулярно потоку альфа-частиц, регистрирующие элементы с электрическими контактами и токоотводами, размещенные на обеих сторонах пластины полупроводникового кристалла, при этом пластина полупроводникового кристалла выполнена с возможностью размещения на обеих ее сторонах всех регистрирующих элементов с электрическими контактами и токоотводами, закреплена по периметру на керамической плате, в центральной части которой выполнено отверстие для попадания альфа-частиц на регистрирующие элементы; керамическая плата закреплена на корпусе, в котором также выполнено отверстие для попадания альфа-частиц на регистрирующие элементы; регистрирующие элементы сделаны в виде полос, выполненных на пластине полупроводникового кристалла методом ионного легирования, а электрические контакты выполнены методом напыления металла на регистрирующие элементы; при этом полосы регистрирующих элементов на одной стороне пластины полупроводникового кристалла параллельны друг другу и перпендикулярны направлению полос регистрирующих элементов на другой стороне пластины полупроводникового кристалла. 2 н. и 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 476 907 C2

1. Многоэлементный полупроводниковый детектор для регистрации альфа-частиц в нейтронном генераторе со статическим вакуумом, включающий корпус детектора, пластину полупроводникового кристалла, размещенную перпендикулярно потоку альфа-частиц, регистрирующие элементы с электрическими контактами и токоотводами, размещенные на обеих сторонах пластины полупроводникового кристалла, отличающийся тем, что пластина полупроводникового кристалла выполнена с возможностью размещения на обеих ее сторонах всех регистрирующих элементов с электрическими контактами и токоотводами, закреплена по периметру на керамической плате, в центральной части которой выполнено отверстие для попадания альфа-частиц на регистрирующие элементы; керамическая плата закреплена на корпусе, в котором также выполнено отверстие для попадания альфа-частиц на регистрирующие элементы; регистрирующие элементы сделаны в виде полос, выполненных на пластине полупроводникового кристалла методом ионного легирования, а электрические контакты выполнены методом напыления металла на регистрирующие элементы; при этом полосы регистрирующих элементов на одной стороне пластины полупроводникового кристалла параллельны друг другу и перпендикулярны направлению полос регистрирующих элементов на другой стороне пластины полупроводникового кристалла; на керамической плате выполнены металлизированные контактные площадки для закрепления токоотводов от электрических контактов регистрирующих элементов и токоотводов наружу нейтронного генератора; притом токоотводы закреплены на электрических контактах регистрирующих элементов и металлизированных контактных площадках керамической платы методом ультразвуковой сварки, а токоотводы от керамической платы для вывода наружу нейтронного генератора выполнены в виде полосок из металлической фольги и закреплены на контактных площадках керамической платы с помощью болтов.

2. Детектор по п.1, отличающийся тем, что p+ полосы регистрирующих элементов электроизолированы между собой обратно смещенными (p-n)-переходами, образованными между регистрирующими элементами p+ типа проводимости и объемом детектора n-типа проводимости, а n+ полосы регистрирующих элементов электроизолированы между собой обратно смещенными (p-n)-переходами, образованными между разделительными полосами p+ типа проводимости и объемом детектора n-типа проводимости.

3. Чувствительный элемент многоэлементного полупроводникового детектора для регистрации альфа-частиц в нейтронном генераторе со статическим вакуумом, включающий пластину полупроводникового кристалла, регистрирующие элементы с электрическими контактами и токоотводами, размещенные на обеих сторонах пластины полупроводникового кристалла, отличающийся тем, что пластина полупроводникового кристалла выполнена с возможностью размещения на обеих ее сторонах всех регистрирующих элементов с электрическими контактами и токоотводами; регистрирующие элементы сделаны в виде полос, выполненных на пластине полупроводникового кристалла методом ионного легирования, а электрические контакты выполнены методом напыления металла на регистрирующие элементы; при этом полосы регистрирующих элементов на одной стороне пластины полупроводникового кристалла параллельны друг другу и перпендикулярны направлению полос регистрирующих элементов на другой стороне пластины полупроводникового кристалла; притом токоотводы закреплены на электрических контактах регистрирующих элементов методом ультразвуковой сварки.

4. Чувствительный элемент по п.3, отличающийся тем, что p+ полосы регистрирующих элементов электроизолированы между собой обратно смещенными (p-n)-переходами, образованными между регистрирующими элементами p+ типа проводимости и объемом детектора n-типа проводимости, а n+ полосы регистрирующих элементов электроизолированы между собой обратно смещенными (p-n)-переходами, образованными между разделительными полосами p+ типа проводимости и объемом детектора n-типа проводимости.

Документы, цитированные в отчете о поиске Патент 2013 года RU2476907C2

ПОЛУПРОВОДНИКОВЫЙ ДЕТЕКТОР ДЛЯ РЕГИСТРАЦИИ СОПУТСТВУЮЩИХ НЕЙТРОНАМ ЗАРЯЖЕННЫХ ЧАСТИЦ В НЕЙТРОННОМ ГЕНЕРАТОРЕ СО СТАТИЧЕСКИМ ВАКУУМОМ 2004
  • Кузнецов А.В.
  • Евсенин А.В.
RU2247411C1
Трикотажное нераспускающееся и нерастягивающееся полотно и способ его изготовления 1948
  • Максимова Ю.А.
SU85679A1
US 2009302226 А1, 10.12.2009
US 2007018110 A1, 25.01.2007.

RU 2 476 907 C2

Авторы

Быстрицкий Вячеслав Михайлович

Замятин Николай Иванович

Зубарев Евгений Валерьевич

Сапожников Михаил Григорьевич

Слепнёв Вячеслав Михайлович

Даты

2013-02-27Публикация

2011-06-08Подача