ПОЛУПРОВОДНИКОВЫЙ ДЕТЕКТОР ДЛЯ РЕГИСТРАЦИИ СОПУТСТВУЮЩИХ НЕЙТРОНАМ ЗАРЯЖЕННЫХ ЧАСТИЦ В НЕЙТРОННОМ ГЕНЕРАТОРЕ СО СТАТИЧЕСКИМ ВАКУУМОМ Российский патент 2005 года по МПК G01T1/24 H01L31/08 G01V5/10 

Описание патента на изобретение RU2247411C1

Изобретение относится к области ядерной физики и может быть использовано для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом.

Известны устройства, содержащие, по меньшей мере, один неорганический сцинтиллятор, нанесенный на оптическое стекло, и фотоэлектронный умножитель (ФЭУ). При этом сцинтиллятор(ы) находится в статическом вакууме нейтронного генератора, а ФЭУ - вне зоны вакуума, US 6297507.

Быстродействие и эффективность регистрации сопутствующих нейтронам заряженных частиц (чувствительность) этого устройства малы вследствие:

- недостаточной интенсивности свечения, вызванного прохождением через сцинтиллятор сопутствующих нейтронам заряженных частиц;

- поглощения части свечения самим сцинтиллятором;

- дополнительных потерь свечения в переходах сцинтиллятор - стекло - ФЭУ.

Устройство по причинам, изложенным выше, имеет быстродействие (максимальный счет сопутствующих заряженных частиц) порядка 104 частиц в секунду. Такой счет (регистрация) сопутствующих заряженных частиц и, следовательно, выделенных по направлению "меченых" нейтронов является недостаточным для практического использования в системе неразрушающего анализа, базирующейся на портативном нейтронном генераторе, см. "Associated particle imaging (API)", Report of Bechtel Nevada (BN) Special Technologies Laboratory (STL), USA, DOE/NV 11718-223, UC-700, May, 1998, http://www.osti.gov/dublincore/gpo/servlets/purl/304166-TEKYDQ/webviewable/304166.pdf.

Известен также полупроводниковый детектор для регистрации заряженных частиц, включающий полупроводниковый регистрирующий элемент, размещенный в диэлектрическом корпусе, выполненном из фольгированного стеклотекстолита, а также токоотводы. Полупроводниковый регистрирующий элемент закреплен в корпусе эпоксидным клеем. Электроды, выполненные в виде тонких слоев металла, одновременно нанесены на поверхности полупроводникового элемента и корпуса напылением. Токоотводы (электрические контакты) прикреплены к металлу корпуса пайкой, проводящим клеем или прижимом, см. Гаценко Л.С., Федосеева О.П. “Полностью обедненные дрейфовые детекторы”, “Приборы и техника эксперимента”, №4, июль-август, 1974, с.46-48 (копия ссылки прилагается). Данное техническое решение принято за прототип настоящего изобретения и может использоваться для регистрации сопутствующих нейтронам заряженных частиц в объеме постоянно откачиваемого вакуума генератора нейтронов (Арльт Р. и др. “Абсолютные измерения сечения деления 239Рu нейтронами энергией 8,5 МэВ”, “Атомная энергия”, том 57, вып.4, октябрь, 1984, с.249-251). В силу своей конструкции и материалов, из которых состоит устройство, оно не может быть использовано в ограниченном объеме со статическим (неоткачиваемым) вакуумом, в том числе, внутри статического вакуума нейтронного генератора. Это объясняется тем, что процесс получения статического вакуума требует высокотемпературного удаления газов, связанного с нагревом всей конструкции при непрерывном откачивании вакуумного объема вместе с устройством, помещенным в этот объем, до температур порядка 400° С в течение 10-12 часов. При таких температурах электрические контакты, диэлектрическая изоляция и структура материалов устройства нарушаются вследствие разных температурных коэффициентов расширения или деградации самих материалов. Кроме того, материалы, из которых выполнено устройство, не являются вакуум-плотными, поэтому процесс длительной десорбции газа после отсечения вакуумного объема от откачивающего насоса приводит в дальнейшем к нарушению статического вакуума и отказу работы нейтронного генератора.

Изобретением решается задача обеспечения возможности регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом при скорости регистрации до 107 частиц в секунду. Для этого устройство должно быть устойчиво к нагреву до 400° С при откачивании вакуумной системы нейтронного генератора перед его запаиванием, нечувствительно к свечению как пучка, так и рассеянных на мишени нейтронного генератора ионов дейтерия (трития), устойчиво к высоким потокам заряженных частиц и нейтронов (до 106 частиц в секунду через 1 см2 поверхности), обладать малой десорбционной способностью, а также иметь слабую чувствительность к нейтронному, гамма-, рентгеновскому и электромагнитному излучениям.

Согласно изобретению эта задача решается за счет того, что в полупроводниковом детекторе для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе, включающем полупроводниковый регистрирующий элемент, размещенный в диэлектрическом корпусе, закрытый как со стороны потока заряженных частиц, так и с противоположной стороны слоями металла, электрически соединенными с токоотводами, токоотвод со стороны потока заряженных частиц выполнен в виде жесткой прижимной металлической пластины с отверстием напротив чувствительной зоны полупроводникового регистрирующего элемента, прикрепленной к диэлектрическому корпусу, а токоотвод с противоположной стороны выполнен в виде жесткой металлической пластины, поджатой пружинным элементом к полупроводниковому регистрирующему элементу, при этом диэлектрический корпус выполнен из вакуум-плотного диэлектрического материала с газовой десорбционной способностью не более 5· 10-8 мбар· см-2·с-1; благодаря этому, практически, исключается искажение статического вакуума в течение полного цикла работы вакуумной трубки нейтронного генератора; корпус может быть выполнен из керамики.

Большая площадь контакта токоотвода с проводящими металлическими слоями полупроводникового регистрирующего элемента, обеспечиваемая в том числе и за счет механического прижима (давления), компенсирует расширение элементов устройства при высокотемпературном нагреве и предотвращает механические повреждения полупроводникового элемента; области полупроводникового элемента, чувствительные к свету и радиационным повреждениям, закрыты керамическим корпусом и находятся на стороне устройства, противоположной мишени нейтронного генератора.

Сущность изобретения поясняется чертежами, где изображено:

на фиг.1 - схема нейтронного генератора с размещенным в нем полупроводниковым детектором;

на фиг.2 - полупроводниковый детектор в разрезе;

на фиг.3 - вариант, предусматривающий агрегацию из трех детекторов, объединенных в общем корпусе.

Полупроводниковый детектор 1 для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе 2 включает полупроводниковый регистрирующий элемент 3. В конкретном примере элемент 3 выполнен из кремния с проводимостью n-типа. Элемент 3 размещен в корпусе 4, выполненном из вакуум-плотного диэлектрического материала с газовой десорбционной способностью не более 5· 10-8 мбар· см-2·с-1; вакуум-плотным материалом считается материал, обеспечивающий длительное сохранение заданной глубины вакуума, что обусловлено как его текстурой, так и минимальным выделением газов (газовой десорбционной способностью).

В рассматриваемом примере корпус выполнен из диэлектрического вакуум-плотного материала - керамики ХС-22. Полупроводниковый регистрирующий элемент 3 закрыт со стороны потока сопутствующих нейтронам заряженных частиц и с противоположной стороны, соответственно, слоями 5 и 6 металла, в частности алюминия, толщиной 1 мкм. Слой 5 электрически соединен с токоотводом, выполненным в виде жесткой прижимной пластины 7 с отверстием 8 напротив чувствительной (центральной) зоны элемента 3. Пластина 7 прикреплена к корпусу 4 крепежными элементами 9. Одним из этих элементов закрепляется контактный элемент 10, выполненный из никелевой проволоки. Токоотвод с противоположной стороны представляет собой сплошную жесткую металлическую пластину 11, поджатую пружинным элементом 12 к слою 6 полупроводникового регистрирующего элемента 3. К пластине 11 прикреплен контактный элемент 13 из никелевой проволоки. В объеме 14 статического вакуума нейтронного генератора размещена мишень 15, содержащая ионы трития, а также источник 16 ионов дейтерия.

Возможен также конструктивный вариант объединения нескольких полупроводниковых детекторов в общий корпус (фиг.3).

Устройство работает следующим образом. Пучок ионов дейтерия от источника 16 попадает на мишень 15. В результате ядерной реакции образуется нейтроны с энергией 14 МэВ и сопутствующие им заряженные альфа-частицы с энергией 3,2 МэВ. Направление сопутствующей нейтрону альфа-частицы всегда противоположно направлению нейтрона. Заряженная частица, попадая в полупроводниковый регистрирующий элемент 3, производит ионизацию внутри него, что приводит к протеканию тока через него и появлению быстрого (порядка наносекунд) электрического сигнала на токоотводах. Регистрация сопутствующих заряженных частиц состоит в съеме с полупроводникового регистрирующего элемента быстрого (длительностью порядка 5-10 наносекунд) электрического сигнала, который выводится наружу из статического вакуума и поступает на регистрирующую аппаратуру. Устройство имеет быстродействие до 107 частиц в секунду, что позволяет увеличить скорость регистрации сопутствующих нейтронам заряженных частиц в 1000 раз и во столько же раз увеличить поток выделенных по направлению "меченых" нейтронов по сравнению с устройствами, выполненными на базе сцинтилляторов, а в сравнении с устройством-прототипом заявленное устройство позволяет регистрировать сопутствующие нейтронам заряженные частицы в нейтронном генераторе со статическим вакуумом.

Данный полупроводниковый детектор прошел испытания на нейтронных генераторах со статическим вакуумом. Суммарное число зарегистрированных заряженных частиц составляет 1013.

Похожие патенты RU2247411C1

название год авторы номер документа
ПОЛУПРОВОДНИКОВЫЙ ДЕТЕКТОР ДЛЯ РЕГИСТРАЦИИ СОПУТСТВУЮЩИХ НЕЙТРОНАМ ЗАРЯЖЕННЫХ ЧАСТИЦ В НЕЙТРОННОМ ГЕНЕРАТОРЕ СО СТАТИЧЕСКИМ ВАКУУМОМ 2013
  • Кузнецов Андрей Викторович
  • Осетров Олег Игоревич
  • Горшков Игорь Юрьевич
RU2529054C1
МНОГОКАНАЛЬНЫЙ ПОЛУПРОВОДНИКОВЫЙ ДЕТЕКТОР ДЛЯ РЕГИСТРАЦИИ АЛЬФА-ЧАСТИЦ В НЕЙТРОННОМ ГЕНЕРАТОРЕ СО СТАТИЧЕСКИМ ВАКУУМОМ И ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЛЯ НЕГО 2011
  • Быстрицкий Вячеслав Михайлович
  • Замятин Николай Иванович
  • Зубарев Евгений Валерьевич
  • Сапожников Михаил Григорьевич
  • Слепнёв Вячеслав Михайлович
RU2476907C2
ГЕНЕРАТОР МЕЧЕНЫХ НЕЙТРОНОВ 2002
  • Авдейчиков В.В.
  • Быстрицкий В.М.
  • Кадышевский В.Г.
  • Никитин В.А.
  • Сапожников М.Г.
  • Сисакян А.Н.
  • Слепнев В.М.
RU2227310C1
СКВАЖИННЫЙ ГЕНЕРАТОР НЕЙТРОНОВ 2012
  • Амурский Андрей Геннадьевич
  • Колюбин Владимир Александрович
  • Осипов Игорь Николаевич
  • Хусаинов Амир Мухитдинович
RU2504853C1
СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР БЫСТРЫХ И ТЕПЛОВЫХ НЕЙТРОНОВ 2004
  • Шульгин Б.В.
  • Райков Д.В.
  • Арбузов В.И.
  • Ивановских К.В.
  • Викторов Л.В.
  • Черепанов А.Н.
  • Андреев В.С.
  • Петров В.Л.
  • Кружалов А.В.
  • Соколкин В.В.
RU2259573C1
ДЕТЕКТОР БЫСТРЫХ НЕЙТРОНОВ 2013
  • Бритвич Геннадий Иванович
  • Кольцов Геннадий Иосифович
  • Диденко Сергей Иванович
  • Чубенко Александр Поликарпович
  • Черных Алексей Владимирович
  • Черных Сергей Владимирович
  • Барышников Федор Михайлович
  • Свешников Юрий Николаевич
  • Мурашев Виктор Николаевич
RU2532647C1
Способ измерения плотности потока нейтронного излучения низкой интенсивности в статических полях смешанного гамма-нейтронного излучения 2018
  • Яковлев Михаил Викторович
RU2676822C1
ДЕТЕКТОР МОНОНАПРАВЛЕННОГО НЕЙТРОННОГО ИЗЛУЧЕНИЯ 2015
  • Яковлев Михаил Викторович
  • Яковлева Татьяна Михайловна
  • Яковлев Дмитрий Михайлович
  • Дикая Наталья Юрьевна
  • Соколова Анна Валентиновна
RU2583861C1
Устройство для исследования потоков нейтронов 1980
  • Бабикова Ю.Ф.
  • Кадилин В.В.
  • Лакина И.Ю.
  • Самоненко Ю.А.
  • Самосадный В.Т.
  • Чаадаев В.А.
  • Шаврин П.И.
SU843572A1
СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР НЕЙТРОНОВ 2009
  • Маклаков Павел Сергеевич
  • Шульгин Борис Владимирович
  • Кортов Сергей Всеволодович
  • Черепанов Александр Николаевич
  • Пиличев Валерий Валерьевич
  • Дерстуганов Алексей Юрьевич
  • Семенова Анастасия Валерьевна
RU2412453C2

Иллюстрации к изобретению RU 2 247 411 C1

Реферат патента 2005 года ПОЛУПРОВОДНИКОВЫЙ ДЕТЕКТОР ДЛЯ РЕГИСТРАЦИИ СОПУТСТВУЮЩИХ НЕЙТРОНАМ ЗАРЯЖЕННЫХ ЧАСТИЦ В НЕЙТРОННОМ ГЕНЕРАТОРЕ СО СТАТИЧЕСКИМ ВАКУУМОМ

Изобретение относится к области ядерной физики и может быть использовано для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом. Сущность: в полупроводниковом детекторе для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе, включающем полупроводниковый регистрирующий элемент, размещенный в диэлектрическом корпусе, закрытый как со стороны потока заряженных частиц, так и с противоположной стороны слоями металла, электрически соединенными с токоотводами, токоотвод со стороны потока заряженных частиц выполнен в виде жесткой прижимной металлической пластины с отверстием напротив чувствительной зоны полупроводникового регистрирующего элемента, прикрепленной к диэлектрическому корпусу, а токоотвод с противоположной стороны выполнен в виде жесткой металлической пластины, поджатой пружинным элементом к полупроводниковому регистрирующему элементу, при этом диэлектрический корпус выполнен из вакуум-плотного материала, с газовой десорбционной способностью, не более 5· 10-8 мбар· см-2·с-1; корпус может быть выполнен из керамики. Технический результат изобретения: обеспечение возможности регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом при скорости регистрации до 107 частиц в секунду. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 247 411 C1

1. Полупроводниковый детектор для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом, включающий полупроводниковый регистрирующий элемент, размещенный в диэлектрическом корпусе, закрытый как со стороны потока заряженных частиц, так и с противоположной стороны слоями металла, электрически соединенными с токоотводами, отличающийся тем, что токоотвод со стороны потока заряженных частиц выполнен в виде жесткой прижимной металлической пластины с отверстием напротив чувствительной зоны полупроводникового регистрирующего элемента, прикрепленной к диэлектрическому корпусу, а токоотвод с противоположной стороны выполнен в виде жесткой металлической пластины, поджатой пружинным элементом к полупроводниковому регистрирующему элементу, при этом диэлектрический корпус выполнен из вакуум-плотного материала с газовой десорбционной способностью не более 5· 10-8 мбар· см-2·с-1.2. Полупроводниковый детектор по п.1, отличающийся тем, что корпус выполнен из керамики.

Документы, цитированные в отчете о поиске Патент 2005 года RU2247411C1

ГАЦЕНКО Л.С., ФЕДОСЕЕВА О.П
Полностью обедненные дрейфовые детекторы
Приборы и техника эксперимента
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
ГЕНЕРАТОР НЕЙТРОНОВ В ГЕРМЕТИЧНОЙ ТРУБКЕ, СОДЕРЖАЩИЙ ВСТРОЕННЫЙ ДЕТЕКТОР СВЯЗАННЫХ АЛЬФА-ЧАСТИЦ ДЛЯ СКВАЖИННОГО КАРОТАЖА 1999
  • Чен Женпень
  • Ксю Сида
  • Жу Шеньянь
  • Жао Йиньлан
  • День Йинькань
  • Жу Вейбин
  • Сун Ейинь
  • Ку Ксяньчай
  • Ли Хуажань
RU2199136C2
УСТРОЙСТВО ДЛЯ МНОГОЗОНДОВОГО НЕЙТРОННОГО КАРОТАЖА 1984
  • Арм Е.М.
  • Басин Я.Н.
  • Блюменцев А.М.
  • Данилов В.Ф.
  • Засадыч Ю.Б.
  • Малышев Е.К.
  • Месропян В.С.
  • Петросян Л.Г.
  • Ремеев В.О.
  • Цейтлин В.Г.
SU1147163A1
КООРДИНАТНЫЙ ДЕТЕКТОР РЕЛЯТИВИСТСКИХ ЧАСТИЦ 2000
  • Саито Такеши
  • Мурашев В.Н.
  • Зацепин Г.Т.
  • Мерзон Г.И.
  • Ладыгин Е.А.
  • Хмельницкий С.Л.
  • Чубенко А.П.
  • Мухамедшин Р.А.
  • Царев В.А.
  • Рябов В.А.
  • Меркин М.М.
RU2197036C2
СПОСОБ ЛЕЧЕНИЯ ОСТРОГО ПАНКРЕАТИТА 2020
  • Ремняков Василий Валентинович
  • Михайлов Александр Юрьевич
  • Халимов Эдуард Вагизович
  • Стяжкина Светлана Николаевна
  • Проничев Вячеслав Викторович
  • Капустин Борис Борисович
RU2738669C1
GB 1520903 А, 09.08.1978.

RU 2 247 411 C1

Авторы

Кузнецов А.В.

Евсенин А.В.

Даты

2005-02-27Публикация

2004-04-23Подача