СПОСОБ УТИЛИЗАЦИИ НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА СТОЧНЫХ ВОД Российский патент 2013 года по МПК F25B30/06 F24D17/02 

Описание патента на изобретение RU2480683C2

Изобретение относится к теплоэнергетике, в частности к установкам отопления и горячего водоснабжения небольших производственных помещений, индивидуальных жилых домов, отдельных сооружений при использовании низкопотенциальных природных источников тепла, хозбытовых стоков и других тепловых отходов.

Существующая возможность обеспечивать с помощью тепловых насосов потребность в воде, нагретой до температуры 50-70°С (для использования в системах отопления и горячего водоснабжения) позволяет утилизировать невостребованное до последнего времени низкопотенциальное тепло сточных вод, в огромных количествах непрерывно направляемых на очистку по канализационным сетям мегаполисов, небольших городов и рабочих поселков. При этом, благодаря такому свойству используемого в тепловых насосах хладагента, как его способность испаряться при температуре равной всего 0-3°С, они могут утилизировать тепло сточных вод с температурой, не превышающей 5-8°С.

Однако, как известно, эффективность работы теплового насоса, характеризующаяся коэффициентом преобразования затраченной электрической энергии в произведенную тепловую энергию (коэффициент φ), существенно зависит от температуры теплоносителя - воды, поступающей в испаритель теплового насоса.

Для примера можно привести данные по тепловым насосам АО "Энергия" (г.Новосибирск).

°С 5 10 15 20 25 30 35 φ 3,60 4,06 4,60 5,35 5,98 6,64 7,19

Известно также, что такие физические характеристики воды, как ее теплопроводность λ Вт/м2·°С, кинематическая вязкость ν м2/с и число Прандтля Рr (определяющие интенсивность передачи тепла от сточных вод воде, циркулирующей в контуре испарителя теплового насоса) тоже зависят от температуры воды (см. Теплотехнический справочник. М.: Энергия, 1976 г., том 2, стр.159) и при ее повышении будут изменяться в лучшую сторону.

В целом приведенные сведения ориентируют поиск путей совершенствования способов утилизации низкопотенциального тепла в направлении использования теплоносителей с максимально возможной повышенной температурой.

Известен способ утилизации низкопотенциального тепла хозбытовых сточных вод, согласно патенту РФ №2243460 (МПК F25B 30/00), позволяющий использовать с помощью теплового насоса тепло шахтной воды с температурой порядка 10°С, а также повышать эффективность работы теплового насоса за счет утилизации тепла сточных вод, например, банно-прачечного хозяйства угольной шахты, с температурой 30-35°С, которые перед сбросом в канализацию очищаются, аккумулируются в теплоизолированной емкости и затем, благодаря последующей многократной циркуляции в контуре испарителя теплового насоса, охлаждаются до 10°С.

Недостатком указанного способа, наряду с необходимостью очистки теплоносителя, является то обстоятельство, что при 4-сменном режиме работы шахты и соответствующим ему суточном графике работы бани (1-2 часа после каждой смены) поступление теплоносителя (при том в ограниченном количестве) носит неравномерный порционный характер и поэтому такой способ может быть целесообразным лишь для определенных конкретных условий, для которых очевидно он и был предложен.

Известен также способ утилизации низкопотенциального тепла хозбытовых сточных вод, согласно патенту РФ №2155302 (МПК F24D 17/02), с использованием теплового насоса и выносного теплообменника, связанного с испарителем теплового насоса промежуточным циркуляционным контуром, при этом в качестве источника тепла используется приемный колодец сточных вод городской канализационной сети, температура которых обычно колеблется в пределах 20-22°С.

Так как в течение часа через колодец проходят сотни кубометров сточных вод, движущихся со значительной скоростью, передача тепла воде, циркулирующей в контуре испарителя теплового насоса, происходит в целом при достаточно благоприятных условиях. Однако эффективно утилизировать таким способом тепло хозбытовых сточных вод, пребывающих в состоянии покоя или движения со скоростью, близкой к нулю, как это имеет место, например, при биологической очистке сточных вод в открытых аэротенках, невозможно в связи с тем, что именно скорость движения теплоносителя является одним из основных факторов, определяющих, наряду с температурным напором, интенсивность процесса теплопередачи.

Известен, принятый нами за прототип, способ утилизации низкопотенциального тепла хозбытовых сточных вод, согласно патенту РФ №2347145 (МПК F25B 30/00), с использованием теплового насоса и выносного теплообменника, размещенного внутри полой колонны эрлифта, погруженной в сточные воды, проходящие биологическую очистку в открытом аэротенке и пребывающие в состоянии покоя или движения со скоростью, близкой к нулю. При этом вокруг теплообменника создают, с помощью сжатого воздуха и щитов ограждения, зону интенсивного образования воздушно-водяной смеси, которая будучи менее плотной, чем окружающая эрлифт вода аэротенка, поднимается вверх по колонне с регулируемой скоростью, что и обеспечивает условия, необходимые для непрерывной передачи тепла воде, циркулирующей в контуре испарителя теплового насоса.

Недостаток указанного способа связан с тем, что в холодные снежные зимы, когда температура очищаемой в аэротенке воды опускается до 3-5°С, существенно снижается эффективность работы теплового насоса, что приводит к падению температуры воды в системе отопления объекта теплоснабжения.

Задачей настоящего изобретения является совершенствование способа утилизации тепла, содержащегося в проходящих биологическую очистку в открытых аэротенках хозбытовых сточных водах, как за счет повышения температурного напора и скорости движения сточных вод в зоне их контакта с выносным теплообменником, так и за счет дополнительного повышения температуры воды, циркулирующей в контуре испарителя, на входе ее в тепловой насос.

Технический результат - повышение эффективности работы теплового насоса и, как следствие этого, повышение в конечном счете температуры воды в системе отопления в зимнее время года.

Указанный выше технический результат достигается за счет того, что в предлагаемом способе утилизации низкопотенциального тепла сточных вод с использованием теплового насоса и выносного теплообменника, размещенного внутри погруженной в сточные воды полой колонны эрлифта, и созданием в колонне эрлифта зоны интенсивного образования воздушно-водяной смеси с регулируемой скоростью подъема, согласно изобретению, что воду, прошедшую через теплообменник, подают в испаритель теплового насоса через подогреватель с встречным потоком теплоносителя, например воды, нагретой тепловым насосом для нужд горячего водоснабжения, при этом частично охлажденный в подогревателе теплоноситель подают внутрь колонны эрлифта в зону образования воздушно-водяной смеси через сопло, направленное вверх.

Технологическая схема заявленного способа утилизации низкопотенциального тепла сточных вод представлена на фиг.1.

Схема включает в себя следующие элементы: выносной теплообменник 1, подогреватель 2, испаритель 3 и конденсатор 4 теплового насоса, циркуляционные насосы 5, распределительную гребенку 6, сборную гребенку 7, систему отопления 8, водопровод 9, систему горячего водоснабжения 10, колонну эрлифта 11, аэротенк 12 и трубопровод подачи сжатого воздуха 13.

Утилизация тепла сточных вод согласно предлагаемому способу осуществляется следующим образом.

Выносной теплообменник 1, задействованный в циркуляционном контуре испарителя 3 теплового насоса, размещают внутри полой колонны эрлифта 11, погруженной в сточные воды аэротенка 12. Воздушно-водяная смесь, образующаяся внутри колонны эрлифта за счет регулируемой подачи в нее сжатого воздуха и поднимающаяся вверх по колонне благодаря пониженной плотности, постоянно обтекая (омывая) теплообменник, передает проходящей через него воде низкопотенциальное тепло, содержащееся в сточных водах. Прошедшую через теплообменник 1 воду подают в испаритель 3 теплового насоса через подогреватель 2 с встречным потоком теплоносителя, например воды, нагретой тепловым насосом для нужд горячего водоснабжения, при этом частично охлажденный (примерно до 20-25°С) в подогревателе 2 теплоноситель подают внутрь колонны эрлифта 11 в зону образования воздушно-водяной смеси через сопло, направленное вверх (на фиг.1 это условно показано стрелочкой и делается с целью повышения скорости подъема воздушно-водяной смеси и ее температуры).

Вода, циркулирующая в контуре испарителя 3 под воздействием насоса 5, пройдя через кожухотрубный (труба в трубе) подогреватель 2 и повысив таким образом свою температуру до 25-35°С, направляется в испаритель 3, где ее тепло, полученное от сточных вод, а также - от воды, нагретой тепловым насосом для нужд горячего водоснабжения (см. фиг.1), обеспечивает испарение хладагента теплового насоса, например фреона R142b. Пройдя через компрессор теплового насоса и дополнительно повысив свое теплосодержание за счет сжатия, пары фреона под воздействием избыточного давления (порядка 15 кг/см2) направляются в конденсатор 4 теплового насоса, где переходя в жидкое состояние нагревают циркулирующую через него водопроводную воду, потребляемую как для нужд горячего водоснабжения, так и для отопления (см. на фиг.1 позиции 8, 9 и 10).

Заявленная совокупность существенных признаков позволяет, благодаря повышению температурного напора и скорости движения, повысить интенсивность процессов передачи тепла воде, поступающей в испаритель теплового насоса, что влечет за собой повышение эффективности его работы и, как следствие этого, появление возможности обеспечивать нормальную температуру в системе отопления объекта, что особенно важно в зимнее время года, когда температура очищаемой в открытом аэротенке воды опускается до 3-5°С.

Таким образом, запасы низкопотенциального тепла сточных вод, проходящих биологическую очистку в открытых аэротенках и пребывающих в состоянии покоя или движения со скоростью, близкой к нулю, могут быть с успехом востребованы и тогда, когда температура очищаемой воды не превышает 3-5°С.

Для реализации заявленного способа не требуется разработка и освоение производства сложного оборудования, так как основной элемент общей технологической схемы утилизации тепла (тепловой насос) уже много лет выпускается серийно.

Похожие патенты RU2480683C2

название год авторы номер документа
СПОСОБ УТИЛИЗАЦИИ НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА 2007
  • Боринских Игорь Иванович
  • Голубков Анатолий Николаевич
  • Закиров Данир Галимзянович
  • Кожевников Виктор Леонидович
  • Мухамедшин Мансур Альтафович
  • Турчанинов Анатолий Михайлович
RU2347145C1
СПОСОБ УТИЛИЗАЦИИ НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА ХОЗБЫТОВЫХ СТОЧНЫХ ВОД 2003
  • Закиров Д.Г.
  • Боринских И.И.
  • Закиров Д.Д.
  • Денисенко С.И.
  • Аксенов А.В.
  • Тациенко В.П.
  • Лобанова Д.М.
  • Поздняков А.К.
RU2243460C1
ТЕПЛООБМЕННИК - УТИЛИЗАТОР ТЕПЛА СЕРЫХ СТОКОВ 2012
  • Наумов Александр Лаврентьевич
  • Судьина Ольга Сергеевна
RU2502022C1
УСТАНОВКА ОТОПЛЕНИЯ И ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ 1999
  • Закиров Д.Г.
  • Рыбин А.А.
  • Закиров Д.Д.
RU2155302C1
ТЕПЛООБМЕННЫЙ МОДУЛЬ 2001
  • Закиров Д.Г.
  • Боринских И.И.
  • Закиров Д.Д.
  • Нехороший И.Х.
RU2186309C1
УСТАНОВКА ОТОПЛЕНИЯ И ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ 2000
  • Закиров Д.Г.
  • Рыбин А.А.
  • Закиров Д.Д.
  • Петин Ю.М.
  • Деменева В.С.
RU2178542C2
ФИЛЬТРОВАЛЬНО-ТЕПЛООБМЕННЫЙ АППАРАТ 2000
  • Боринских И.И.
  • Закиров Д.Г.
  • Нехороший И.Х.
  • Каплунов Ю.В.
  • Ткаченко Н.Ф.
RU2161763C1
СПОСОБ УТИЛИЗАЦИИ ТЕПЛОТЫ НЕОЧИЩЕННЫХ СТОЧНЫХ ВОД 2007
  • Лавриненко Александр Георгиевич
  • Сопленков Константин Иванович
  • Спорыхин Олег Васильевич
  • Стороженков Александр Николаевич
  • Чаховский Владимир Михайлович
  • Шур Анатолий Михайлович
  • Воронин Александр Леонидович
RU2338969C1
СПОСОБ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ 2013
  • Батухтин Андрей Геннадьевич
  • Кобылкин Михаил Владимирович
  • Батухтин Сергей Геннадьевич
RU2561846C2
СИСТЕМА АВТОНОМНОГО ТЕПЛОСНАБЖЕНИЯ И ХОЛОДОСНАБЖЕНИЯ ЗДАНИЙ И СООРУЖЕНИЙ 2008
  • Стребков Дмитрий Семенович
  • Харченко Валерий Владимирович
  • Чемеков Вячеслав Викторович
RU2382281C1

Иллюстрации к изобретению RU 2 480 683 C2

Реферат патента 2013 года СПОСОБ УТИЛИЗАЦИИ НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА СТОЧНЫХ ВОД

Изобретение относится к теплоэнергетике, в частности к установкам отопления и горячего водоснабжения небольших производственных помещений, индивидуальных жилых домов, отдельных сооружений при использовании низкопотенциальных природных источников тепла, хозбытовых стоков и других тепловых отходов. Способ утилизации низкопотенциального тепла сточных вод реализуют с использованием теплового насоса и выносного теплообменника, размещенного внутри погруженной в сточные воды полой колонны эрлифта. В колонне эрлифта создают зоны интенсивного образования воздушно-водяной смеси с регулируемой скоростью подъема. Воду, прошедшую через теплообменник, подают в испаритель теплового насоса через подогреватель с встречным потоком теплоносителя, например воды, нагретой тепловым насосом для нужд горячего водоснабжения. Частично охлажденный в подогревателе теплоноситель подают внутрь колонны эрлифта в зону образования воздушно-водяной смеси через сопло, направленное вверх. Изобретение направлено на повышение эффективности работы теплового насоса и, как следствие этого, повышение в конечном счете температуры воды в системе отопления в зимнее время года. 1 ил.

Формула изобретения RU 2 480 683 C2

Способ утилизации низкопотенциального тепла сточных вод с использованием теплового насоса и выносного теплообменника, размещенного внутри погруженной в сточные воды полой колонны эрлифта, и созданием в колонне эрлифта зоны интенсивного образования воздушно-водяной смеси с регулируемой скоростью подъема, отличающийся тем, что воду, прошедшую через теплообменник, подают в испаритель теплового насоса через подогреватель с встречным потоком теплоносителя, например воды, нагретой тепловым насосом для нужд горячего водоснабжения, при этом частично охлажденный в подогревателе теплоноситель подают внутрь колонны эрлифта в зону образования воздушно-водяной смеси через сопло, направленное вверх.

Документы, цитированные в отчете о поиске Патент 2013 года RU2480683C2

СПОСОБ УТИЛИЗАЦИИ НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА 2007
  • Боринских Игорь Иванович
  • Голубков Анатолий Николаевич
  • Закиров Данир Галимзянович
  • Кожевников Виктор Леонидович
  • Мухамедшин Мансур Альтафович
  • Турчанинов Анатолий Михайлович
RU2347145C1
УСТАНОВКА ОТОПЛЕНИЯ И ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ 1999
  • Закиров Д.Г.
  • Рыбин А.А.
  • Закиров Д.Д.
RU2155302C1
US 4321798 A, 30.03.1982
US 4243522 A, 06.01.1981
JP 2010196950 A, 09.09.2010.

RU 2 480 683 C2

Авторы

Закиров Данир Галимзянович

Боринских Игорь Иванович

Мухамедшин Мансур Альтафович

Закиров Глеб Данирович

Голубков Анатолий Николаевич

Даты

2013-04-27Публикация

2011-04-20Подача