УСТРОЙСТВО ДЛЯ СПЕКТРАЛЬНОГО АНАЛИЗА Российский патент 2013 года по МПК G01J3/18 G01J3/42 

Описание патента на изобретение RU2480718C2

Изобретение относится к технике спектрального анализа и может найти применение при эмиссионных и атомно-абсорбционных измерениях в спектроанализаторах с дифракционными решетками и многоэлементными фотоприемниками.

Известно устройство (А.Я.Суранов, А.В.Шпомер, А.Г.Якунин «Применение автоматизированного регистратора спектра на основе линейного ПЗС-фотодиодного приемника для спектрального анализа металлов» ЖПС, №3, т.XLIII, 1985 г, стр.377), в котором для регистрации спектра используется многоэлементный фотоприемник. В этом устройстве в качестве координаты спектральной линии берется координата элемента с максимальной амплитудой сигнала центра тяжести ее изображения. Однако механические вибрации и изменение условий окружающей среды приводит к изменениям положения диспергирующего элемента и, как следствие, к смещению спектральных линий относительно чувствительных элементов фотоприемника. Для корректировки смещения необходимо дополнительно регистрировать реперный (известный) спектр.

Наиболее близким к предлагаемому устройству является устройство для спектрального анализа (а.с. №1827550, G01J 3/42, опубликовано 15.07.93 г.), содержащее источник излучения, который через входную щель освещает дифракционную решетку, разлагающую излучение в спектр. Спектр регистрируется многоэлементным фотоприемником, который расположен в фокальной плоскости дифракционной решетки. Сигнал с фотоприемника поступает на устройство обработки информации (например, ЭВМ) и отображается в виде номеров элементов фотоприемника со своими величинами сигналов на индикаторном устройстве.

В этом устройстве последовательно измеряют значения сигналов со всех элементов фотоприемника, фиксируют номера элементов фотоприемника, для которых зарегистрированы сигналы от максимальных до фоновых значений для определяемой и реперной спектральных линий. Определяют точные координаты максимумов интенсивности реперной и определяемой спектральных линий. Определяют расстояния К1 и К2 между первым элементом фотоприемника и координатами максимумов интенсивностей определяемой и реперной спектральных линий и находят длину волны λx определяемой спектральной линии по формуле:

где λx - длина волны определяемой спектральной линии;

λ1 - длина волны реперной спектральной линии;

κ1, κ2 - расстояния между первым элементом фотоприемника и координатами максимумов интенсивностей определяемой и реперной спектральных линий соответственно;

P - среднее значение обратной линейной дисперсии.

Недостатком этого устройства является необходимость регистрации наряду с исследуемым дополнительно реперного спектра при каждом измерении. Следующим недостатком этого устройства является то, что в период времени между регистрацией реперного и исследуемого спектров вследствие механических вибраций и изменения условий окружающей среды может произойти изменение положения дифракционной решетки, в результате чего возникнет смещение исследуемого спектра и изменение координаты максимума интенсивности определяемой спектральной линии относительно первого элемента фотоприемника. Это приведет к дополнительной ошибке при нахождении длины волны определяемой спектральной линии.

Задачей, на решение которой направлено изобретение, является повышение точности и оперативности определения длин волн спектральных линий при проведении спектрального анализа за счет исключения ошибок, возникающих при изменении положения дифракционной решетки под воздействием вибраций и условий окружающей среды, при сокращении времени измерений.

Указанная задача решается тем, что в устройстве для спектрального анализа, содержащем источник излучения, входную щель, дифракционную решетку, в фокальной плоскости которой установлен многоэлементный фотоприемник, выходом подключенный к первому входу блока регистрации и обработки информации, введен второй многоэлементный фотоприемник, установленный в плоскости зеркально отраженного изображения входной щели с возможностью регистрации лучей как реперной, так и определяемой спектральных линий, выход которого соединен со вторым входом блока регистрации и обработки информации.

На фиг.1 приведена структурная схема устройства для спектрального анализа. На фиг.2 показан ход лучей при изменении положения дифракционной решетки. На фиг.3 изображены уровни выходных сигналов с элементов второго фотоприемника во время регистрации реперной и определяемой спектральных линий при условии изменения положения дифракционной решетки.

Устройство для спектрального анализа содержит источник излучения 1, входную щель 2, дифракционную решетку 3, в фокальной плоскости которой установлен многоэлементный фотоприемник 4, выходом подключенный к первому входу блока регистрации и обработки информации 5, второй многоэлементный фотоприемник 6, установленный в плоскости зеркально отраженного изображения входной щели, с возможностью регистрации лучей как реперной, так и определяемой спектральных линий, выходом подключенный ко второму входу блока регистрации и обработки информации 5.

Устройство работает следующим образом. От источника излучения 1, через входную щель 2 падающий луч L1 освещает дифракционную решетку 3, разлагающую излучение в спектр, расположенный в фокальной плоскости дифракционной решетки 3 многоэлементный фотоприемник 4 поочередно регистрирует разложенные в спектр лучи реперной L2 и определяемой L3 спектральных линий. Электрический сигнал с выхода фотоприемника 4 поступает в блок регистрации и обработки информации (например, ЭВМ с аналоговым входом) 5, где преобразуется в цифровую форму, запоминается для расчета положений максимумов реперной и определяемой спектральных линий. Одновременно с регистрацией реперной спектральной линии излучение зеркально отраженного изображения входной щели (луч L4) регистрируется вторым фотоприемником 6, с выхода которого электрический сигнал поступает на второй вход блока регистрации и обработки информации 5, где также преобразуется в цифровую форму, запоминается и определяется положение максимума зеркально отраженного изображения входной щели XmR, соответствующее положению дифракционной решетки во время регистрации реперной спектральной линии. Одновременно с регистрацией определяемой спектральной линии излучение зеркально отраженного изображения входной щели также регистрируется вторым фотоприемником 6, запоминается и определяется положение максимума зеркально отраженного изображения входной щели XmO, соответствующее положению дифракционной решетки во время регистрации определяемой спектральной линии. Если дифракционная решетка 3 оставалась неподвижной в период времени регистрации реперной и определяемой спектральных линий, то положения максимумов XmR и XmO совпадут.

Если же в процессе работы устройства вследствие механических вибраций или изменения условий окружающей среды (температуры, давления, влажности) за время от регистрации реперной до регистрации определяемой спектральных линий дифракционная решетка 3 изменит свое положение на угол α1-α и займет положение 3', нормаль n - положение n', зеркально отраженный луч L4 также изменит направление на угол α1-α (луч L'4), а луч разложенного излучения с длиной волны определяемой спектральной линии L3 изменит свое положение на угол β-β' (луч L'3) в соответствии с основным уравнением дифракционной решетки (см. И.В.Пейсахсон, «Оптика спектральных приборов», Л. Машиностроение, стр.53):

где κ - порядок спектра;

λ - длина волны светового излучения;

N - число штрихов дифракционной решетки, приходящихся на миллиметр;

α - угол падения светового излучения;

β - угол разложения светового излучения длиной волны λ.

Сплошной линией на фиг.3 показан сигнал на выходе второго фотоприемника 6 от изображения входной щели во время регистрации реперной спектральной линии с положением максимума XmR при аппроксимации выходных сигналов с элементов фотоприемника треугольной функцией (максимальное значение сигнала на элементе М). Пунктирной линией показан сигнал на выходе фотоприемника 6 от изображения входной щели во время регистрации определяемой спектральной линии (максимальное значение сигнала на элементе Н, положение максимума XmO), при изменении положения дифракционной решетки в позицию 3'. По линейному смещению ΔX зеркально отраженного луча L4 рассчитывают угол падения α1. Используя основное уравнение дифракционной решетки (2) находят угол разложения β1, по которому рассчитывают линейное смещение Δy луча L3 определяемой спектральной линии. Окончательно внося поправку в (1), определяют длину волны определяемой спектральной линии λх как:

где λx - длина волны определяемой спектральной линии;

λ1 - длина волны реперной спектральной линии;

κ1, κ2 - расстояния между первым элементом фотоприемника и координатами максимумов интенсивностей определяемой и реперной спектральных линий соответственно;

Р - среднее значение обратной линейной дисперсии;

Δy - линейное смещение определяемой спектральной линии.

Введение дополнительного фотоприемника, установленного в плоскости зеркально отраженного изображения входной щели с возможностью регистрации лучей как реперной, так и определяемой спектральных линий, позволяет уменьшить погрешность за счет исключения ошибок, возникающих при изменении положения дифракционной решетки под воздействием вибраций и условий окружающей среды, а также повысить оперативность определения длин волн, так как регистрацию реперной спектральной линии достаточно выполнить однократно при проведении спектрального анализа.

Похожие патенты RU2480718C2

название год авторы номер документа
Способ определения длины волны спектральной линии 1990
  • Демин Анатолий Петрович
  • Султанбеков Фарит Фатыхович
  • Яндуганова Ольга Борисовна
SU1827550A1
КОНФОКАЛЬНЫЙ СПЕКТРОАНАЛИЗАТОР ИЗОБРАЖЕНИЙ 2014
  • Шульгин Владимир Алексеевич
  • Бабишов Элнур Мегралиевич
  • Минаков Дмитрий Анатольевич
  • Пахомов Геннадий Владимирович
  • Сарычева Ираида Николаевна
RU2579640C1
Устройство для спектрального анализа 2019
  • Кошелев Александр Георгиевич
  • Бобрешов Анатолий Михайлович
  • Умывакин Василий Митрофанович
RU2722604C1
Способ определения длины волны спектральных линий 1988
  • Демин Анатолий Петрович
  • Султанбеков Фарит Фатыхович
SU1603202A1
Спектрофотометр с пространственным сканированием 1977
  • Гальцев Анатолий Петрович
  • Зазворка Виктор Валерьянович
  • Мачигин Борис Анатольевич
  • Михайлов Владимир Васильевич
  • Плугин Александр Илларионович
  • Поспелов Герман Витальевич
SU976306A1
КОМПАКТНЫЙ ШИРОКОДИАПАЗОННЫЙ ВУФ СПЕКТРОМЕТР 2017
  • Абраменко Дмитрий Борисович
  • Кривцун Владимир Михайлович
  • Шевелько Александр Петрович
  • Якушев Олег Феликсович
RU2661742C1
Спектроанализатор оптического излучения 1983
  • Демченков Виктор Петрович
  • Дерюгин Лев Николаевич
  • Чекан Александр Васильевич
SU1089431A1
СПОСОБ ФОРМИРОВАНИЯ ОПТИЧЕСКОГО СПЕКТРА 2021
  • Кошелев Александр Георгиевич
  • Бобрешов Анатолий Михайлович
  • Лаптиёв Евгений Викторович
  • Харина Анастасия Юрьевна
RU2781375C1
СОЛНЕЧНЫЙ ВЕКТОР-МАГНИТОГРАФ 2009
  • Кожеватов Илья Емельянович
  • Руденчик Евгений Антонович
  • Черагин Николай Петрович
  • Куликова Елена Хусаиновна
RU2406982C1
УСТРОЙСТВО ДЛЯ ИДЕНТИФИКАЦИИ ОБЪЕКТА 2004
  • Андреев Сергей Васильевич
  • Беляев Андрей Владимирович
  • Гуревич Борис Симхович
  • Земский Владимир Иванович
  • Соколов Валерий Николаевич
  • Шаповалов Валентин Викторович
RU2268495C1

Иллюстрации к изобретению RU 2 480 718 C2

Реферат патента 2013 года УСТРОЙСТВО ДЛЯ СПЕКТРАЛЬНОГО АНАЛИЗА

Изобретение относится к технике спектрального анализа и может найти применение при эмиссионных и атомно-абсорбционных измерениях в спектроанализаторах с дифракционными решетками и многоэлементными фотоприемниками. Устройство для спектрального анализа содержит источник излучения, входную щель, дифракционную решетку, в фокальной плоскости которой установлен многоэлементный фотоприемник, выходом подключенный к первому входу блока регистрации и обработки информации. В устройство введен второй многоэлементного фотоприемник, установленный в плоскости зеркально отраженного изображения входной щели с возможностью регистрации лучей как реперной, так и определяемой спектральных линий, выход которого соединен со вторым входом блока регистрации и обработки информации. Технический результат заключается в обеспечении возможности повышения точности и оперативности определения длин волн спектральных линий, а также в обеспечении возможности сокращения времени измерений. 3 ил.

Формула изобретения RU 2 480 718 C2

Устройство для спектрального анализа, содержащее источник излучения, входную щель, дифракционную решетку, в фокальной плоскости которой установлен многоэлементный фотоприемник, выходом подключенный к первому входу блока регистрации и обработки информации, отличающееся тем, что в него введен второй многоэлементный фотоприемник, установленный в плоскости зеркально отраженного изображения входной щели с возможностью регистрации лучей как реперной, так и определяемой спектральных линий, выход которого соединен со вторым входом блока регистрации и обработки информации.

Документы, цитированные в отчете о поиске Патент 2013 года RU2480718C2

Способ определения длины волны спектральной линии 1990
  • Демин Анатолий Петрович
  • Султанбеков Фарит Фатыхович
  • Яндуганова Ольга Борисовна
SU1827550A1
JP 63198832 A, 17.08.1988
МНОГОКАНАЛЬНОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПИРОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК 2008
  • Аушев Анатолий Федорович
  • Бедрин Александр Геннадьевич
  • Туркин Андрей Николаевич
RU2366909C1
US 7564547 B2, 21.07.2009.

RU 2 480 718 C2

Авторы

Бреус Игорь Владимирович

Дёмин Анатолий Петрович

Рагинов Сергей Владимирович

Саттаров Феликс Абдулнурович

Чугунов Юрий Петрович

Даты

2013-04-27Публикация

2011-08-12Подача