СПОСОБ ПОДАЧИ КОМПОНЕНТОВ ТОПЛИВА В КАМЕРУ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ Российский патент 2013 года по МПК F02K9/52 

Описание патента на изобретение RU2482317C1

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД).

В основу изобретения положена задача реализации смесеобразования, заключающегося в том, чтобы из форсунки в огневое пространство камеры сгорания выходила кольцевая струя окислительной среды, внутри которой располагалась струя горючего, а окружала струю окислительной среды также кольцевая струя горючего.

Необходимость разработки таких форсунок продиктована как целесообразностью улучшения смесеобразования в камере сгорания, в частности, для повышения удельного импульса тяги двигателей, работающих на двух компонентах, так и потребностью в создании трехкомпонентных форсунок для жидкостных ракетных двигателей, в которых используются три компонента топлива.

В случае применения двухкомпонентного топлива в предлагаемых форсунках в качестве окислительной среды используется окислительный газогенераторный газ, а в обеих окружающих его струях - одно и то же горючее.

В случае применения трехкомпонентного топлива, один окислитель и два разных компонента горючего, в качестве окислительной среды используется газогенераторный окислительный газ, один из компонентов горючего идет в наружной кольцевой струе, а другой - во внутренней.

Из анализа уровня техники известны двухкомпонентные форсунки с глухим осевым каналом и тангенциальными сквозными отверстиями, простирающимися от наружной поверхности форсунки до пересечения с этим осевым каналом. Таковой форсункой является форсунка камеры сгорания жидкостных ракетных двигателей РД-107, РД-108 (см., например, энциклопедию "Космонавтика", М., 1985, стр.426, параграф "Форсуночная головка"). Эту форсунку принимаем в качестве аналога изобретения.

Недостаток аналога в том, что в нем не может быть использован третий компонент топлива, а также в том, что в нем имеется резерв для улучшения смесеобразования и повышения удельного импульса тяги жидкостного ракетного двигателя.

Из анализа уровня техники известна также газожидкостная двухкомпонентная струйно-струйная форсунка жидкостного ракетного двигателя РД-253 (см. учебник для вузов, авторы Г.Г.Гахун, В.И.Баулин, В.А.Володин и др. "Конструкция и проектирование жидкостных ракетных двигателей". М., 1989 г., стр.136, рис.7.14, поз.1). Эту форсунку принимаем также в качестве аналога.

Недостаток аналога в том, что в нем нельзя использовать третий компонент топлива, а кроме того, эта форсунка имеет резерв для улучшения смесеобразования и повышения удельного импульса тяги жидкостных ракетных двигателей, работающих на двухкомпонентном топливе.

Известны форсунки, образующие антипульсационные перегородки головки двигателя SSME (см. Г.Г.Гахун, В.И.Баулин, В.А.Володин и др. "Конструкция и проектирование жидкостных ракетных двигателей". М., 1989 г., стр.135, рис.7.12, поз.3). Эти форсунки - двухкомпонентные, выдвинутые выходной своей частью в огневое пространство камеры сгорания жидкостного ракетного двигателя. Эту форсунку принимаем в качестве аналога изобретений.

Известна газожидкостная форсунка смесительной головки кислородно-водородного двигателя (см. Г.Г.Гахун, В.И.Баулин, В.А.Володин и др. "Конструкция и проектирование жидкостных ракетных двигателей". М., 1989 г., стр.136, рис.7.13, поз.2). Форсунка содержит имеющий осевой вход и выход трубчатый корпус с осевым каналом и коаксиально закрепленную внутри корпуса глухую трубку, выполненную зацело с пилоном и трубчатым корпусом. В пилонах выполнены сквозные отверстия, простирающиеся вдоль пилона от наружной поверхности форсунки до осевого канала в глухой трубке со стороны его глухого конца, при этом канал глухой трубки образован со стороны выхода ее глухим осевым каналом, а со стороны входа - входными сквозными отверстиями в пилоне.

Недостаток указанной форсунки в том, что в ней имеется резерв для улучшения смесеобразования и повышения удельного импульса тяги двигателя, а кроме того, в нем нельзя использовать третий компонент топлива.

Известен способ подачи компонентов топлива в камеру жидкостного ракетного двигателя и топливная форсунка камеры сгорания жидкостного ракетного двигателя, при помощи которой реализуется указанный способ, содержащая имеющий осевой вход и выход трубчатый корпус с основным осевым каналом, а также не менее чем на одном пилоне закрепленную коаксиально корпусу внутри него глухую трубку, выполненную зацело с пилоном и трубчатым корпусом, причем в пилоне выполнено не менее чем одно входное сквозное отверстие, простирающееся вдоль пилона от наружной поверхности форсунки до осевого канала в глухой трубке со стороны ее глухого конца, канал глухой трубки образован со стороны выхода ее глухим осевым каналом, а со стороны входа - входным сквозным отверстием в пилоне, при этом основной осевой канал трубчатого корпуса со стороны выхода выполнен со ступенчатым расширением, в которое направлены выполненные тангенциально относительно оси форсунки сквозные отверстия, простирающиеся со стороны наружной поверхности форсунки до пересечения с основным осевым каналом (Патент РФ №2232916, МПК: F02K 9/52 - прототип).

Окислитель подается в виде сплошной струи через трубчатый корпус с наконечником, а горючее - через кольцевые зазоры между трубчатым корпусом и трубкой окислителя.

Основными недостатками указанной форсунки является то, что форсунка не имеет настроечных элементов для настройки форсунки по линии горючего и окислителя на заданный расход, что приводит к нерасчетному соотношению компонентов и потерям удельного импульса тяги. Кроме этого, полость керосина в форсунке используется только на режиме работы двигателя на компонентах «кислород-керосин-водород», на которой двигатель работает достаточно короткое время. При работе двигателя на компонентах «кислород-керосин», на режиме второй и последующих ступеней, такое выполнение выходной части форсунки приводит к значительным потерям экономичности, сопоставимым в ряде случаев с выигрышем от применения третьего компонента топлива, имеющего большую плотность, на режиме первой ступени.

Задачей изобретения является устранение указанных недостатков и создание способа подачи компонентов топлива в камеру жидкостного ракетного двигателя, применение которого позволит обеспечить повышенную экономичность рабочего процесса при работе соосно-струйной форсунки как в качестве трехкомпонентной, на компонентах топлива «кислород-керосин-водород», так и в качестве двухкомпонентной, на компонентах топлива «кислород-водород».

Решение поставленной задачи достигается тем, что в предложенном способе подачи компонентов топлива в камеру жидкостного ракетного двигателя, заключающемся в подаче окислителя и горючего в полость камеры сгорания из соответствующих полостей смесительной головки при помощи соосно-струйных форсунок, содержащих имеющий осевой вход и выход трубчатый корпус с основным осевым каналом, а также не менее чем на одном пилоне закрепленную коаксиально корпусу внутри него глухую трубку, выполненную за одно целое с пилоном и трубчатым корпусом, причем в пилоне выполнено не менее чем одно входное сквозное отверстие, простирающееся вдоль пилона от наружной поверхности форсунки до осевого канала в глухой трубке со стороны ее глухого конца, при этом канал глухой трубки образован со стороны выхода ее глухим осевым каналом, а со стороны входа - входным сквозным отверстием в пилоне, причем основной осевой канал трубчатого корпуса со стороны выхода выполняют со ступенчатым изменением проходного сечения, согласно изобретению, ступенчатое изменение проходного сечения трубчатого корпуса выполняют с уменьшением проходного сечения упомянутого корпуса от пилонов к выходной части, преимущественно, в виде одного конфузора, при этом на выходной части трубчатого корпуса устанавливают втулку с образованием между наружной поверхностью упомянутого корпуса и внутренней поверхностью втулки кольцевой полости, в которой размещают винтовые каналы, простирающиеся со стороны наружной поверхности форсунки до сообщения с основным осевым каналом, со стороны осевого входа трубчатого корпуса выполняют настроечный элемент в виде фаски, выполненной с возможностью изменения ее геометрических параметров при настройке, трубчатый корпус выполняют разъемным, на наружной поверхности глухой трубки, размещенной в выходной части трубчатого корпуса, выполняют пилоны, взаимодействующие с внутренней поверхностью выходной части трубчатого корпуса, причем продольные оси упомянутых пилонов устанавливают под углом к продольной оси форсунки, при этом в пилонах выполняют каналы, выходную часть которых выполняют под углом к продольной оси форсунки, отличным от угла установки продольных осей указанных пилонов, при этом входную часть упомянутых каналов соединяют с полостью глухой трубки, а выходную - с кольцевой полостью, образованной трубчатым корпусом и глухой трубкой, которую выполняют разъемной, состоящей из пилонной части и наконечника, причем в месте их стыка устанавливают жиклер, при этом расход окислителя подают в камеру сгорания в виде двух потоков - основного и дополнительного, причем требуемую величину расхода окислителя обеспечивают путем изменения проходного сечения и геометрических размеров жиклера, который предварительно устанавливают в месте соединения пилонной части и наконечника глухой трубки, при этом основную часть расхода окислителя осесимметрично подают через канал внутри наконечника форсунки, а дополнительную - тангенциально через каналы, которые предварительно выполняют в пилонах наконечника форсунки, взаимодействующих с внутренней поверхностью трубчатого корпуса, причем продольные оси указанных каналов выполняют под углом к продольной оси форсунки, обеспечивая таким образом тангенциальную составляющую скорости дополнительной части потока и его закрутку, при этом расход горючего подают осесимметрично оси форсунки до месторасположения указанных пилонов и направляют на указанные пилоны, придавая ему тангенциальную составляющую скорости, причем направление тангенциальной составляющей скорости окислителя, подаваемого из каналов в пилонах, сообщают в противоположную сторону по отношению к тангенциальной составляющей скорости горючего, подаваемого через винтовые каналы, расположенные в кольцевой полости между втулкой и наружной поверхностью трубчатого корпуса, при этом требуемый расход горючего обеспечивают за счет изменения геометрических размеров настроечного элемента, предпочтительно, входной фаски на трубчатом корпусе, который предварительно выполняют с возможностью изменения его геометрических размеров, причем на режиме первой ступени в камеру жидкостного ракетного двигателя подают кислород, керосин и водород, а на режиме второй и последующих ступеней - кислород и водород.

В варианте применения способа, глухую трубку закрепляют коаксиально корпусу внутри него на двух радиально направленных и равнорасположенных по окружности пилонах, внутри каждого из которых размещают два поперечных относительно оси форсунки входных сквозных отверстия.

Сущность изобретения иллюстрируется чертежами, где на фиг.1 показан осевой продольный разрез соосно-струйной форсунки для реализации указанного способа, на фиг.2 - выносной элемент А с изображением выходной части форсунки в увеличенном масштабе, на фиг.3 - поперечный разрез Б-Б выходной части форсунки, на фиг.4 - выходная часть форсунки с пилонами на глухой трубке.

Соосно-струйная форсунка содержит имеющий осевой вход и выход трубчатый корпус 1 с основным осевым каналом 2, а также не менее чем на одном пилоне 3 закрепленную коаксиально корпусу внутри него глухую трубку 4, выполненную за одно целое с пилоном 3 и трубчатым корпусом 1. В пилоне 3 выполнено не менее чем одно входное сквозное отверстие 5, простирающееся вдоль пилона 3 от наружной поверхности форсунки до осевого канала 6 в глухой трубке 4 со стороны ее глухого конца. Осевой канал 6 глухой трубки 4 образован со стороны выхода ее глухим осевым каналом, а со стороны входа - входным сквозным отверстием в пилоне. Основной осевой канал 2 трубчатого корпуса 1 со стороны выхода выполнен со ступенчатым изменением проходного сечения. Ступенчатое изменение проходного сечения трубчатого корпуса 1 выполнено с уменьшением проходного сечения корпуса 1 от пилонов к выходной части в виде одного конфузора 7. На выходной части трубчатого корпуса 1 установлена втулка 8 с образованием между наружной поверхностью корпуса 1 и внутренней поверхностью втулки 8 кольцевой полости 9, в которой размещены винтовые каналы 10. Со стороны осевого входа трубчатого корпуса 1 выполнен настроечный элемент 11 в виде фаски, выполненной с возможностью изменения ее геометрических параметров при настройке. Трубчатый корпус 1 выполнен разъемным. На наружной поверхности глухой трубки 4, размещенной в выходной части трубчатого корпуса 1, выполнены пилоны 12, взаимодействующие с внутренней поверхностью трубчатого корпуса 1.

Продольные оси упомянутых пилонов 12 установлены под углом к продольной оси форсунки. В пилонах 12 выполнены каналы 13, входная часть 14 которых соединяется с полостью трубки 4, а выходная 15 - с кольцевой полостью 16, образованной трубчатым корпусом 1 и глухой трубкой 4, причем оси указанных каналов 13 расположены под углом к продольной оси форсунки, отличным от угла установки самих пилонов 12.

Оси упомянутых каналов 13 в пилонах 12 расположены противоположно направлению осей винтовых каналов 10 в кольцевой полости между втулкой 8 и наружной поверхностью трубчатого корпуса 1.

Глухая трубка 4 выполнена разъемной, состоящей из пилонной части 17 и наконечника 18, причем в месте их стыка установлен жиклер 19.

Предложенный способ может быть реализован при помощи указанной форсунки следующим образом.

Первое горючее, преимущественно водород или продукты его сгорания, подают по осевому каналу 2 корпуса 1 к пилонам 12. Проходя пилоны 12, струя горючего приобретает вращательное движение и поступает в камеру сгорания. Настройку форсунки на заданный расход первого горючего осуществляют изменением геометрических размеров настроечного элемента 11, выполненного в виде фаски.

Второе горючее, преимущественно, керосин, подают в кольцевую полость 9, образованную втулкой 8 и наружной поверхностью трубчатого корпуса 1. Горючее проходит по винтовым пазам между винтовыми каналами 10, приобретает вращательное движение и подается в камеру сгорания.

Окислитель подают внутрь глухой трубки 4 трубчатого корпуса 1 по отверстию 5. Из полости глухой трубки 4 по осевому каналу 6 окислитель поступает по направлению к камере сгорания. Настройку форсунки на заданный расход окислителя осуществляют изменением геометрических размеров настроечного элемента 19, выполненного в виде жиклера. В районе пилонов 12, часть расхода окислителя поступает во входную часть 14 каналов 13, проходит по ним и поступает из выходной части 15 указанных каналов 13 в поток первого горючего, подаваемого через кольцевую полость между наконечником 18 и трубчатым корпусом и внутренней поверхностью трубчатого корпуса 1. За счет расположения осей пилонов 12 под углом к продольной оси форсунки, часть расхода окислителя, подаваемого через каналы 13, приобретает вращательное движение, что приводит у улучшению условий смесеобразования.

За счет того, что оси каналов 13 расположены под углом к продольной оси форсунки, отличным от угла установки самих пилонов 12, часть расхода окислителя, подаваемого через каналы 13, приобретает тангенциальную составляющую скорости, отличную по величине и направлению от тангенциальной составляющей скорости потока горючего, подаваемого через пилоны 12. Таким образом, часть потока расхода окислителя и поток горючего начинают вращаться, образуя конуса распыла с различным углом наклона образующей к продольной оси форсунки, что обеспечивает их более интенсивное перемешивание.

За счет того, что направление винтовых каналов 10 выполнено в противоположную сторону углу установки пилонов 12, происходит дополнительное перемешивание струи второго горючего, поступающей в камеру сгорания в виде конуса, вращающегося в одну сторону, с аналогичным конусом струи второй части окислителя, вращающейся в противоположном направлении. Такая подача компонентов топлива позволяет улучшить условия смесеобразования.

Кроме этого, отбор части расхода окислителя на каналы 13 позволяет уменьшить расход, поступающий через осевой канал 6 глухой трубки 4, что позволяет уменьшить длину нераспавшейся части основной струи окислителя и, тем самым, улучшить условия ее распадения, что, в конечном итоге, приведет к улучшению условий смесеобразования.

Указанным образом на режиме первой ступени в камеру жидкостного ракетного двигателя подают кислород, керосин и водород, а на режиме второй и последующих ступеней - кислород и водород.

Использование предложенного технического решения позволит обеспечить повышенную экономичность рабочего процесса при работе форсунки как в качестве трехкомпонентной, на компонентах топлива «кислород-керосин-водород», так и в качестве двухкомпонентной, на компонентах топлива «кислород-водород».

Похожие патенты RU2482317C1

название год авторы номер документа
СПОСОБ ПОДАЧИ КОМПОНЕНТОВ ТОПЛИВА В КАМЕРУ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2012
  • Черниченко Владимир Викторович
  • Шепеленко Виталий Борисович
RU2482320C1
СПОСОБ ПОДАЧИ КОМПОНЕНТОВ ТОПЛИВА В КАМЕРУ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2012
  • Черниченко Владимир Викторович
  • Шепеленко Виталий Борисович
RU2481494C1
СПОСОБ ПОДАЧИ КОМПОНЕНТОВ ТОПЛИВА В КАМЕРУ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2012
  • Черниченко Владимир Викторович
  • Шепеленко Виталий Борисович
RU2481492C1
СПОСОБ ПОДАЧИ КОМПОНЕНТОВ ТОПЛИВА В КАМЕРУ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2012
  • Черниченко Владимир Викторович
  • Шепеленко Виталий Борисович
RU2481493C1
СПОСОБ ПОДАЧИ КОМПОНЕНТОВ ТОПЛИВА В КАМЕРУ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2012
  • Черниченко Владимир Викторович
  • Шепеленко Виталий Борисович
RU2482319C1
СПОСОБ ПОДАЧИ КОМПОНЕНТОВ ТОПЛИВА В КАМЕРУ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2012
RU2483223C1
СМЕСИТЕЛЬНАЯ ГОЛОВКА КАМЕРЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2012
  • Черниченко Владимир Викторович
  • Шепеленко Виталий Борисович
RU2479741C1
СМЕСИТЕЛЬНАЯ ГОЛОВКА КАМЕРЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2012
  • Черниченко Владимир Викторович
  • Шепеленко Виталий Борисович
RU2484289C1
КАМЕРА ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2012
  • Черниченко Владимир Викторович
  • Шепеленко Виталий Борисович
RU2482314C1
КАМЕРА ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2012
  • Черниченко Владимир Викторович
  • Шепеленко Виталий Борисович
RU2481487C1

Иллюстрации к изобретению RU 2 482 317 C1

Реферат патента 2013 года СПОСОБ ПОДАЧИ КОМПОНЕНТОВ ТОПЛИВА В КАМЕРУ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ

Изобретение относится к жидкостным ракетным двигателям (ЖРД). Способ подачи компонентов топлива в камеру ЖРД, заключающийся в подаче окислителя и горючего в полость камеры сгорания из полостей смесительной головки при помощи соосно-струйных форсунок, содержащих имеющий осевой вход и выход трубчатый корпус с основным осевым каналом, а также не менее чем на одном пилоне закрепленную коаксиально корпусу внутри него глухую трубку, выполненную за одно целое с пилоном и трубчатым корпусом. Вдоль пилона выполнено не менее чем одно входное сквозное отверстие от наружной поверхности форсунки до осевого канала в глухой трубке со стороны ее глухого конца. Канал глухой трубки образован со стороны выхода ее глухим осевым каналом, а со стороны входа - входным сквозным отверстием в пилоне. Основной осевой канал трубчатого корпуса со стороны выхода выполняют с уменьшением проходного сечения корпуса от пилонов к выходной части в виде одного конфузора. На выходной части трубчатого корпуса устанавливают втулку с образованием между наружной поверхностью корпуса и внутренней поверхностью втулки кольцевой полости, в которой выполнены винтовые каналы, от наружной поверхности форсунки до сообщения с основным осевым каналом. Трубчатый корпус выполняют разъемным. На наружной поверхности глухой трубки выполняют пилоны, взаимодействующие с внутренней поверхностью выходной части трубчатого корпуса. Продольные оси пилонов устанавливают под углом к продольной оси форсунки. Каналы выходной части выполняют под углом к продольной оси форсунки, отличным от угла установки продольных осей пилонов. Входную часть каналов соединяют с полостью глухой трубки, а выходную - с кольцевой полостью, образованной трубчатым корпусом и глухой трубкой, которую выполняют разъемной, причем в месте их стыка устанавливают жиклер. Расход окислителя подают в камеру сгорания в виде двух потоков - основного и дополнительного, причем величину расхода окислителя обеспечивают путем изменения проходного сечения жиклера, установленного в месте соединения пиленной части и наконечника глухой трубки. Основную часть расхода окислителя осесимметрично подают через канал внутри наконечника форсунки, а дополнительную - тангенциально через каналы в пилонах наконечника форсунки, взаимодействующих с внутренней поверхностью трубчатого корпуса. Продольные оси каналов выполняют под углом к продольной оси форсунки, обеспечивая тангенциальную составляющую скорости дополнительной части потока и его закрутку. Расход горючего подают осесимметрично оси форсунки и направляют в пилоны, придавая ему тангенциальную составляющую скорости. Направление тангенциальной составляющей скорости окислителя, подаваемого из каналов в пилонах, сообщают в противоположную сторону по отношению к тангенциальной составляющей скорости горючего, подаваемого через винтовые каналы. Расход горючего обеспечивают за счет изменения геометрических размеров настроечного элемента. На режиме первой ступени в камеру жидкостного ракетного двигателя подают кислород, керосин и водород, а на режиме второй и последующих ступеней - кислород и водород. Изобретение обеспечивает повышение экономичности рабочего процесса форсунки как в качестве трехкомпонентной «кислород-керосин-водород», так и двухкомпонентной - «кислород-водород». 1 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 482 317 C1

1. Способ подачи компонентов топлива в камеру жидкостного ракетного двигателя, заключающийся в подаче окислителя и горючего в полость камеры сгорания из соответствующих полостей смесительной головки при помощи соосно-струйных форсунок, содержащих имеющий осевой вход и выход трубчатый корпус с основным осевым каналом, а также не менее чем на одном пилоне закрепленную коаксиально корпусу внутри него глухую трубку, выполненную за одно целое с пилоном и трубчатым корпусом, причем в пилоне выполнено не менее чем одно входное сквозное отверстие, простирающееся вдоль пилона от наружной поверхности форсунки до осевого канала в глухой трубке со стороны ее глухого конца, при этом канал глухой трубки образован со стороны выхода ее глухим осевым каналом, а со стороны входа - входным сквозным отверстием в пилоне, причем основной осевой канал трубчатого корпуса со стороны выхода выполняют со ступенчатым изменением проходного сечения, отличающийся тем, что ступенчатое изменение проходного сечения трубчатого корпуса выполняют с уменьшением проходного сечения упомянутого корпуса от пилонов к выходной части, преимущественно в виде одного конфузора, при этом на выходной части трубчатого корпуса устанавливают втулку с образованием между наружной поверхностью упомянутого корпуса и внутренней поверхностью втулки кольцевой полости, в которой размещают винтовые каналы, простирающиеся со стороны наружной поверхности форсунки до сообщения с основным осевым каналом, со стороны осевого входа трубчатого корпуса выполняют настроечный элемент в виде фаски, выполненной с возможностью изменения ее геометрических параметров при настройке, трубчатый корпус выполняют разъемным, на наружной поверхности глухой трубки, размещенной в выходной части трубчатого корпуса, выполняют пилоны, взаимодействующие с внутренней поверхностью выходной части трубчатого корпуса, причем продольные оси упомянутых пилонов устанавливают под углом к продольной оси форсунки, при этом в пилонах выполняют каналы, выходную часть которых выполняют под углом к продольной оси форсунки, отличным от угла установки продольных осей указанных пилонов, при этом входную часть упомянутых каналов соединяют с полостью глухой трубки, а выходную - с кольцевой полостью, образованной трубчатым корпусом и глухой трубкой, которую выполняют разъемной, состоящей из пилонной части и наконечника, причем в месте их стыка устанавливают жиклер, при этом расход окислителя подают в камеру сгорания в виде двух потоков - основного и дополнительного, причем требуемую величину расхода окислителя обеспечивают путем изменения проходного сечения и геометрических размеров жиклера, который предварительно устанавливают в месте соединения пилонной части и наконечника глухой трубки, при этом основную часть расхода окислителя осесимметрично подают через канал внутри наконечника форсунки, а дополнительную - тангенциально через каналы, которые предварительно выполняют в пилонах наконечника форсунки, взаимодействующих с внутренней поверхностью трубчатого корпуса, причем продольные оси указанных каналов выполняют под углом к продольной оси форсунки, обеспечивая таким образом тангенциальную составляющую скорости дополнительной части потока и его закрутку, при этом расход горючего подают осесимметрично оси форсунки до месторасположения указанных пилонов и направляют на указанные пилоны, придавая ему тангенциальную составляющую скорости, причем направление тангенциальной составляющей скорости окислителя, подаваемого из каналов в пилонах, сообщают в противоположную сторону по отношению к тангенциальной составляющей скорости горючего, подаваемого через винтовые каналы, расположенные в кольцевой полости между втулкой и наружной поверхностью трубчатого корпуса, при этом требуемый расход горючего обеспечивают за счет изменения геометрических размеров настроечного элемента, предпочтительно входной фаски на трубчатом корпусе, который предварительно выполняют с возможностью изменения его геометрических размеров, причем на режиме первой ступени в камеру жидкостного ракетного двигателя подают кислород, керосин и водород, а на режиме второй и последующих ступеней - кислород и водород.

2. Способ подачи компонентов топлива по п.1, отличающийся тем, что глухую трубку закрепляют коаксиально корпусу внутри него на двух радиально направленных и равнорасположенных по окружности пилонах, внутри каждого из которых размещают два поперечных относительно оси форсунки входных сквозных отверстия.

Документы, цитированные в отчете о поиске Патент 2013 года RU2482317C1

ТОПЛИВНАЯ ФОРСУНКА ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) 2001
  • Каторгин Б.И.
  • Каменский С.Д.
  • Колесников А.И.
RU2232916C2
СПОСОБ ПОЛУЧЕНИЯ РАБОЧЕГО ТЕЛА НА ТРЕХКОМПОНЕНТНОМ ТОПЛИВЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1994
  • Рачук В.С.
  • Гончаров Н.С.
  • Орлов В.А.
  • Туртушов В.А.
  • Ефремов Ю.А.
  • Веремеенко Н.П.
  • Макаренко Б.Г.
RU2108477C1
СПОСОБ ОРГАНИЗАЦИИ РАБОЧЕГО ПРОЦЕССА В КАМЕРЕ СГОРАНИЯ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ МАЛОЙ ТЯГИ 2005
  • Казанкин Филипп Андреевич
  • Ларин Евгений Григорьевич
  • Бешенев Юрий Александрович
  • Кутуев Рашит Хурматович
  • Салич Леонид Васильевич
RU2319853C2
СПОСОБ СМЕСЕОБРАЗОВАНИЯ В КАМЕРЕ СГОРАНИЯ КИСЛОРОДНО-ВОДОРОДНОГО ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 1986
  • Скуфинский А.И.
  • Рубинский В.Р.
  • Татарко А.И.
  • Хрисанфов С.П.
  • Янчилин Л.А.
  • Бебелин И.Н.
RU2083861C1
US 4621492 A, 11.11.1986
СПОСОБ ПРИТУПЛЕНИЯ ОСТРЫХ КРОМОК СТЕКЛОИЗДЕЛИЙ 2013
  • Чадин Валентин Сергеевич
  • Алиев Тимур Алекперович
RU2543222C1

RU 2 482 317 C1

Авторы

Черниченко Владимир Викторович

Шепеленко Виталий Борисович

Даты

2013-05-20Публикация

2012-03-15Подача