СПОСОБ НАСТРОЙКИ ЭЛЕКТРОМАГНИТНОГО ПРЕОБРАЗОВАТЕЛЯ Российский патент 2013 года по МПК G01B7/02 

Описание патента на изобретение RU2482444C2

Изобретение относится к области измерения линейных размеров устройствами, в которых использованы электрические и магнитные средства, и может быть использовано при неразрушающем контроле толщины покрытия из непроводящего материала на токопроводящей подложке.

В статье А.А.Астафьева «Выбор регулируемых параметров мостовой измерительной схемы вихретокового дефектоскопа», опубликованной в сборнике «Проблемы неразрушающего контроля», издательство «Штниица», 1973 год издания, описан преобразователь, применяемый для определения дефектов в токопроводящем материале (металле). Преобразователь имеет две измерительные обмотки, включенные согласно в плечи сравнения моста. Настройку преобразователя проводят путем амплитудно-фазовой балансировки мостовой схемы вдали от металла. Затем сбалансированный преобразователь подносят к металлу, происходит разбалансировка мостовой схемы. Фиксируют величину фазы в измерительной диагонали, причем величина выходного напряжения зависит от начальной фазы разбалансировки мостовой схемы и имеет экстремум. Изменение фазы разбалансировки мостовой схемы преобразователя позволяет определить наличие дефекта в металле.

Недостатком настройки известного преобразователя является зависимость его выходного напряжения от стабильности тока возбуждения, протекающего в катушках, на которую влияют колебания температуры окружающей среды.

Недостаток устранен в способе настройки электромагнитного преобразователя, описанном в изобретении «Устройство контроля газового зазора технологического канала уран-графитового ядерного реактора», патент РФ №2377672, G21C 17/06, опубликован 27.12.2009. Преобразователь выполнен в виде двух измерительных катушек, установленных на магнитопроводе, и отдельной катушки возбуждения, с расположенным над ней короткозамкнутым токопроводящим кольцом из неферромагнитного металла. Измерительные катушки преобразователя включены согласно и подключены к блоку электронной обработки сигнала через мостовую схему амплитудно-фазовой балансировки преобразователя. Катушка возбуждения подключена к блоку электронной обработки сигнала через стабилизатор тока возбуждения.

Наличие отдельной катушки возбуждения и питание ее от стабилизатора тока позволяет значительно снизить влияние температуры на параметры преобразователя, а применение короткозамкнутого кольца - снизить влияние дефектов металла.

Настройка преобразователя заключается в последовательной балансировке мостовой схемы по амплитуде с помощью резистора, а фазовая балансировка осуществляется перемещением короткозамкнутого кольца вдоль катушки возбуждения до получения на выходе электронной обработки экстремума (минимума) сигнала напряжения, который является точкой отсчета (рабочей точкой) для определения измеряемых параметров.

Недостатком настройки вышеуказанного преобразователя является его пониженная точность при измерении толщины покрытия из непроводящего материала на токопроводящей подложке, поскольку измерение производится вблизи экстремума.

Целью изобретения является повышение точности преобразователя путем выбора оптимальной рабочей точки для отсчета показаний при измерении толщины непроводящего покрытия на токопроводящей подложке.

Поставленная цель достигается тем, что в известном способе настройки электромагнитного преобразователя, содержащем амплитудно-фазовую балансировку напряжения путем последовательного вращения резистора мостовой схемы и перемещения короткозамкнутого неферромагнитного кольца вдоль катушки возбуждения, до достижения экстремума показаний милливольтметра, вдали от токопроводящего материала, рабочую точку для отсчета показаний толщины непроводящего покрытия получают путем разбалансировки мостовой схемы преобразователя на величину 0,75-2,5% от максимального показания милливольтметра при помещении преобразователя на металлическую подложку, не имеющую непроводящего покрытия.

Сущность изобретения иллюстрируется чертежами, на которых изображены:

на фиг.1 - устройство преобразователя;

на фиг.2 - принципиальная схема;

на фиг.3, 4 - эпюры настроек.

Устройство (фиг.1, 2) содержит ферромагнитный сердечник 1, на котором помещают катушку 2 возбуждения и две измерительные катушки 3. Поверх катушки 2 возбуждения помещают короткозамкнутое токопроводящее неферромагнитное кольцо 4. Под ферромагнитным сердечником 1 расположена токопроводящая подложка 5.

Измерительные катушки 3 включены согласно и связаны со схемой 6 электронной обработки сигнала (фиг.2) через мостовую схему 7. Мостовая схема 7 содержит переменный резистор R1 и два постоянных резистора R2 и R3, которые совместно с измерительными катушками 3 образуют плечи мостовой схемы 7. Катушка 2 возбуждения питается от стабилизатора тока схемы 6 электронной обработки сигнала.

Настройка токовихревого преобразователя осуществляется следующим образом.

Преобразователь располагают вне зоны воздействия любого токопроводящего материала. На катушку 2 возбуждения (фиг.1, 2) подают питание. Амплитудную балансировку производят вращением переменного резистора R1 мостовой схемы 7 до получения минимума напряжения на выходе схемы 6 электронной обработки сигнала. Фазовую балансировку производят перемещением короткозамкнутого токопроводящего неферромагнитного кольца 4 и добиваются уменьшения показаний напряжения на выходе схемы 6 электронной обработки сигнала. Повторяют вращение резистора R1 и передвижение кольца 4 до получения минимального экстремума (фиг.3, 4). Закрепляют короткозамкнутое токопроводящее неферромагнитное кольцо 4.

Затем устанавливают преобразователь на токопроводящую подложку 5 (фиг.1), физические свойства которой соответствуют реальному токопроводящему материалу, на который настраивается преобразователь, без нанесенного слоя непроводящего покрытия, толщина которого в дальнейшем будет измеряться. Фиксируют максимальное показание милливольтметра схемы 6 электронной обработки сигнала (фиг.2).

Далее снимают преобразователь с подложки. Путем вращения резистора R1 разбалансируют мостовую схему преобразователя на величину 0,75-2,5% от максимального показания милливольтметра схемы 6 электронной обработки сигнала (фиг.3, 4). Получают рабочую точку для отсчета показаний толщины непроводящего покрытия.

Для проверки правильности разбалансировки мостовой схемы преобразователя его плавно подносят к подложке. При правильной разбалансировке показания милливольтметра схемы 6 электронной обработки сигнала увеличиваются от величины разбалансировки до максимальных и не переходят через экстремум. Если при поднесении преобразователя к подложке показания милливольтметра начинают уменьшаться, переходят через экстремум, а затем увеличиваются, снимают преобразователь с подложки, вращают резистор R1 в обратную сторону, чтобы достигнуть экстремума, и вновь разбалансируют мостовую схему преобразователя на 0,75-2,5% в другом квадранте (фиг.3, 4).

Величина разбалансировки мостовой схемы преобразователя в пределах 0,75-2,5% обеспечивает максимальную его чувствительность в зоне измерения толщины непроводящего покрытия, заданной техническими условиями на преобразователь, а квадрант расположения рабочей точки (фиг.3, 4) определяет физические свойства токопроводящей подложки (ферромагнит или неферромагнит). Математический аппарат схемы 6 электронной обработки сигнала позволяет получить результат измерений непосредственно в линейной величине.

Величина разбалансировки мостовой схемы преобразователя в пределах 0,75-2,5% оптимальна. В зоне менее 0,75% скорость нарастания амплитуды выходного сигнала, при удалении преобразователя от подложки, снижается и в точке экстремума равна нулю. При этом снижается чувствительность преобразователя при контроле толщины покрытия, и, как следствие, пониженная точность. Разбалансировка мостовой схемы преобразователя выше 2,5% нецелесообразна, поскольку скорость нарастания амплитуды выходного сигнала, при приближении преобразователя к подложке, становится квазипостоянной. Разбалансировка мостовой схемы преобразователя выше 2,5% сужает динамический диапазон измерений толщины покрытия, который определяется как логарифм отношений максимальной толщины покрытия, заданной техническими условиями на преобразователь, к минимальной толщине, обусловленной погрешностью преобразователя.

Выбор квадранта начальной фазы разбалансировки мостовой схемы определяет назначение преобразователя для применения его на подложках, выполненных из ферромагнитного или неферромагнитного материала, что обеспечивает его максимальную чувствительность.

Изготовление универсального преобразователя, пригодного для работы с любым токопроводящим материалом (ферромагнитным и неферромагнитным), связано с потерей его чувствительности при измерении толщины покрытия. Поскольку рабочая точка близка к экстремуму и приращение выходного напряжения мостовой схемы стремится к нулю, зона нечувствительности преобразователя расширяется за счет неизбежного прохождения выходного напряжения мостовой схемы через экстремум.

Измерение толщины покрытия производят преобразователем, настроенным вышеуказанным способом. Преобразователь помещают на поверхность изделия из токопроводящего материала с нанесенным слоем непроводящего покрытия. Выходное напряжение схемы 6 электронной обработки сигнала соответствует измеряемой толщине непроводящего покрытия и может быть преобразовано в линейную физическую величину математическим приложением схемы 6.

В период с апреля по июль 2011 года проводилась техническая проверка заявляемого способа настройки электромагнитного преобразователя, входящего в многофункциональный вихретоковый прибор (МВП), выпускаемый ООО «НВП «Кропус».

Настройка проводилась на образцах из стали 20 ГОСТ 1050-88 и сплава алюминиевого Д16Т ГОСТ 21631-76. В качестве покрытия применялись аттестованные меры толщины из пластика, в качестве измерительного устройства - лабораторный МВП. Все преобразователи, настроенные заявленным способом, прошли контроль службой ОТК и признаны годными к применению.

Похожие патенты RU2482444C2

название год авторы номер документа
ЭЛЕКТРОМАГНИТНЫЙ ПРЕОБРАЗОВАТЕЛЬ 2014
  • Богачев Александр Сергеевич
  • Борисенко Вячеслав Владимирович
  • Гусев Игорь Павлович
  • Елистратова Ирина Владимировна
RU2577083C1
УСТРОЙСТВО КОНТРОЛЯ ГАЗОВОГО ЗАЗОРА ТЕХНОЛОГИЧЕСКОГО КАНАЛА УРАН-ГРАФИТОВОГО ЯДЕРНОГО РЕАКТОРА 2008
  • Богачев Александр Сергеевич
  • Борисенко Владимир Иосифович
  • Борисенко Вячеслав Владимирович
  • Бухарский Алексей Степанович
  • Орлов Алексей Германович
RU2377672C1
ИЗМЕРИТЕЛЬНЫЙ ТРАКТ ВИХРЕТОКОВОГО ДЕФЕКТОСКОПА ДЛЯ КОНТРОЛЯ ТРУБ 2018
  • Богачёв Александр Сергеевич
  • Борисенко Вячеслав Владимирович
  • Гусев Игорь Павлович
RU2694428C1
УНИВЕРСАЛЬНЫЙ СЕЛЕКТИВНЫЙ ИНДУКЦИОННЫЙ МЕТАЛЛОИСКАТЕЛЬ 2021
  • Фоминых Алексей Михайлович
RU2772406C1
АВТОГЕНЕРАТОР МАГНИТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ВИБРАЦИОННОГО ГИРОСКОПА И СПОСОБ БАЛАНСИРОВКИ АВТОГЕНЕРАТОРА 2007
  • Фролов Евгений Николаевич
  • Соловьев Дмитрий Олегович
  • Мезенцев Александр Павлович
RU2359401C1
ИЗМЕРИТЕЛЬНОЕ УСТРОЙСТВО 1994
  • Фридман Б.П.
  • Жернаков В.С.
RU2082079C1
Устройство для дефектоскопии сплошности электропроводящих материалов 1983
  • Венгринович Валерий Львович
SU1130791A1
Способ косвенного измерения при помощи дифференциального датчика и устройство для его реализации 2018
  • Дюмин Максим Иванович
  • Минин Петр Валерьевич
  • Ануфриев Дмитрий Юрьевич
RU2675405C1
СПОСОБ ВИХРЕТОКОВОГО ИЗМЕРЕНИЯ ТОЛЩИНЫ МЕТАЛЛИЧЕСКИХ ПОКРЫТИЙ 2011
  • Сясько Владимир Александрович
  • Ивкин Антон Евгеньевич
RU2456589C1
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ КОРОТКОЗАМКНУТЫХ ВИТКОВ В ЭЛЕКТРИЧЕСКИХ КАТУШКАХ 1997
  • Лопатин С.К.
RU2130193C1

Иллюстрации к изобретению RU 2 482 444 C2

Реферат патента 2013 года СПОСОБ НАСТРОЙКИ ЭЛЕКТРОМАГНИТНОГО ПРЕОБРАЗОВАТЕЛЯ

Изобретение относится к области измерения линейных размеров устройствами, в которых использованы электрические и магнитные средства, и может быть использовано при неразрушающем контроле толщины покрытия из непроводящего материала на токопроводящей подложке. Сущность: способ настройки электромагнитного преобразователя включает амплитудно-фазовую балансировку путем последовательного вращения переменного резистора мостовой схемы (7) и перемещения короткозамкнутого токопроводящего неферромагнитного кольца (4) вдоль катушки (2) возбуждения до достижения экстремума показаний милливольтметра вне зоны воздействия любого токопроводящего материала. Затем устанавливают преобразователь на токопроводящую подложку (5) без нанесенного слоя непроводящего покрытия, толщина которого в дальнейшем будет измеряться. Фиксируют максимальное показание милливольтметра схемы 6 электронной обработки сигнала. Далее снимают преобразователь с подложки (5). Путем вращения переменного резистора разбалансируют мостовую схему (7) преобразователя на величину 0,75-2,5% от максимального показания милливольтметра схемы (6) электронной обработки сигнала. Получают рабочую точку для отсчета показаний толщины непроводящего покрытия. Технический результат: повышение точности преобразователя за счет исключения зоны нечувствительности вблизи экстремума при настройке. 4 ил.

Формула изобретения RU 2 482 444 C2

Способ настройки электромагнитного преобразователя, содержащий амплитудно-фазовую балансировку путем последовательного вращения переменного резистора мостовой схемы и перемещения короткозамкнутого токопроводящего неферромагнитного кольца вдоль катушки возбуждения до достижения экстремума показаний милливольтметра вне зоны воздействия токопроводящего материала, отличающийся тем, что рабочую точку для отсчета показаний толщины непроводящего покрытия получают путем разбалансировки мостовой схемы преобразователя на величину 0,75-2,5% от максимального показания милливольтметра при помещении преобразователя на металлическую подложку.

Документы, цитированные в отчете о поиске Патент 2013 года RU2482444C2

УСТРОЙСТВО КОНТРОЛЯ ГАЗОВОГО ЗАЗОРА ТЕХНОЛОГИЧЕСКОГО КАНАЛА УРАН-ГРАФИТОВОГО ЯДЕРНОГО РЕАКТОРА 2008
  • Богачев Александр Сергеевич
  • Борисенко Владимир Иосифович
  • Борисенко Вячеслав Владимирович
  • Бухарский Алексей Степанович
  • Орлов Алексей Германович
RU2377672C1
ЭЛЕКТРОМАГНИТНЫЙ ТОЛЩИНОМЕР 1990
  • Любашов Г.А.
SU1834510A1
Способ многочастотного вихретокового контроля и преобразователь для его осуществления 1978
  • Билик Юлий Зиновьевич
  • Ройтбурд Иосиф Аронович
  • Слуцкая Майя Зельмановна
SU789730A1
US 7508201 В2, 24.03.2009.

RU 2 482 444 C2

Авторы

Богачев Александр Сергеевич

Борисенко Вячеслав Владимирович

Гусев Игорь Павлович

Даты

2013-05-20Публикация

2011-08-25Подача