ИСТОЧНИК ТОРМОЗНОГО ИЗЛУЧЕНИЯ Российский патент 2013 года по МПК H05H11/00 

Описание патента на изобретение RU2482641C1

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий.

Известен источник тормозного излучения (Л.М.Ананьев, А.А.Воробьев, В.И.Горбунов. Индукционный ускоритель электронов - бетатрон. М.: Госатомиздат, 1961, с.228-231), содержащий магнитопровод, полюсы, обмотки возбуждения на полюсах, центральные вкладыши, ускорительную камеру между полюсами, мишень, расположенную в ускорительной камере, обмотки смещения ускоренных электронов на мишень с импульсными ампер-витками в конце цикла ускорения, расположенные на центральных вкладышах или на полюсах.

В этом источнике смещение электронов с равновесной орбиты на мишень реализуется за счет их доускорения импульсным магнитным полем обмоток смещения.

Известен источник тормозного излучения (Москалев В.А. Бетатроны. М.: Энергоиздат, 1981, с.38), выбранный в качестве прототипа, содержащий магнитопровод, полюсы, обмотки возбуждения на полюсах, центральные вкладыши, ускорительную камеру между полюсами, мишень, расположенную в ускорительной камере на радиусе, большем радиуса равновесной орбиты, две системы расположенных на полюсах обмоток смещения с одинаковыми по величине и противоположно направленными импульсными ампер-витками в конце цикла ускорения и радиальными размерами, меньшими радиуса равновесной орбиты ускоряемых электронов у обмоток смещения первой системы, и радиальными размерами, большими радиуса равновесной орбиты ускоряемых электронов у обмоток смещения второй системы.

В этом источнике смещение электронов с равновесной орбиты на мишень реализуется за счет уменьшения индукции в области равновесной орбиты импульсным магнитным полем обмоток смещения.

Известные источники тормозного излучения имеют достаточно малые размеры (до 0,2 мм) фокусного пятна только в радиальном направлении, но при гораздо больших размерах, превышающих 2 мм, в направлении, перпендикулярном плоскости ускорения - в аксиальном направлении. Такое соотношение ограничивает, например, функциональные параметры промышленных томографов на основе этих источников.

Большие размеры фокусного пятна в аксиальном направлении являются следствием больших амплитуд колебаний электронов в этом направлении в процессе смещения электронов с равновесной орбиты на мишень из-за малых сил, действующих на отклоняющиеся от плоскости ускорения электроны, величины которых определяются малыми величинами радиальной составляющей индукции между ускорительными полюсами вблизи плоскости ускорения в процессе смещения.

Задачей настоящего изобретения является уменьшение размера фокусного пятна тормозного излучения в аксиальном направлении с возможностью регулирования соотношения размеров фокусного пятна в аксиальном и радиальном направлениях.

Поставленная задача достигается тем, что в источнике тормозного излучения, который содержит магнитопровод, полюсы, обмотки возбуждения на полюсах, центральные вкладыши, ускорительную камеру между полюсами, мишень, расположенную в ускорительной камере на радиусе, большем радиуса равновесной орбиты, две системы обмоток смещения с противоположно направленными импульсными ампер-витками в конце цикла ускорения, обмотки смещения расположены между ускорительной камерой и магнитопроводом, в обмотках смещения первой системы, образуемой ближними к полюсам обмотками смещения, направление импульсных ампер-витков совпадает с направлением токов в обмотках возбуждения на полюсах, а обмотки смещения второй системы расположены между обмотками смещения первой системы с зазорами относительно обмоток смещения первой системы и между собой, причем первая система обмоток выполнена с импульсными ампер-витками в конце цикла ускорения, большими импульсных ампер-витков второй системы обмоток.

Отличительными от прототипа признаками являются расположение обмоток смещения между ускорительной камерой и магнитопроводом, совпадение направлениий импульсных ампер-витков в обмотках смещения первой системы ближних к полюсам обмоток смещения с направлением токов в обмотках возбуждения на полюсах, расположение обмоток смещения второй системы с зазором относительно обмоток смещения первой системы ближних к полюсам обмоток смещения и между собой, выполнение первой системы обмоток смещения с импульсными ампер-витками в конце цикла ускорения, большими импульсных ампер-витков второй системы обмоток смещения.

Размеры фокусного пятна тормозного излучения задаются размерами области мишени, которая облучается электронами, ускоренными на равновесной орбите, относительно которой они совершали бетатронные колебания, смещенными с равновесной орбиты и переместившимися в пространстве между равновесной орбитой и мишенью по спиральной траектории.

Размер облучаемой области мишени в аксиальном направлении определяется амплитудами колебаний электронов в аксиальном направлении в процессе смещения, величины которых обратно пропорциональны величине аксиального градиента радиальной составляющей индукции.

При этом радиальный размер облучаемой области мишени определяется шагом спиральной траектории, величина которого задается распределением индукции в процессе смещения.

В процессе смещения импульсное магнитное поле, формируемое первой и второй системами обмоток, увеличивает в зависимости от величины импульсных ампер-витков степень спадания магнитного поля в области между равновесной орбитой и радиальным положением мишени в гораздо большей степени, чем при реализации процесса смещения в известных устройствах. Радиальная составляющая индукции во всех точках этой области вблизи плоскости ускорения увеличивается, причем степень увеличения является возрастающей функцией радиального отличия от положения равновесной орбиты. В результате в процессе смещения амплитуда аксиальных колебаний электронов уменьшается, электроны падают на мишень с уменьшенной амплитудой аксиальных колебаний, облучают область поверхности малого аксиального размера, что обеспечивает малый аксиальный размер фокусного пятна тормозного излучения.

Выполнение первой системы с импульсными ампер-витками обмоток в конце цикла ускорения, большими импульсных ампер-витков второй системы обмоток, позволяет смещать электроны при заданном в зависимости от соотношения импульсных ампер-витков первой и второй систем обмоток спадании индукции магнитного поля в области между равновесной орбитой и радиальным положением мишени за счет доускорения электронов действием различия в ампер-витках первой и второй систем обмоток. Это обеспечивает регулирование соотношения амплитуды аксиальных колебаний и шага спиральной траектории в процессе перемещения электронов от равновесной орбиты к радиальному положению мишени и, значит, соотношения между аксиальным и радиальным размерами фокусного пятна.

На фиг.1 показана схема предлагаемого устройства в двух проекциях.

На фиг.2 - радиальные распределения индукции В в плоскости ускорения.

Зависимость 1 - перед началом процесса смещения электронов с равновесной орбиты.

Зависимости 2, 3, 4, 5 - в момент достижения порогового значения магнитного потока в пределах равновесной орбиты: зависимость 2 - при реализации устройства-аналога со смещением за счет доускорения электронов, зависимость 3 - при реализации предлагаемого устройства при малых импульсных ампер-витках обмоток смещения, зависимость 4 - при реализации предлагаемого устройства при больших импульсных ампер-витках обмоток смещения, зависимость 5 - при реализации устройства-прототипа со смещением за счет уменьшения индукции в области равновесной орбиты.

На фиг.3 - зависимости магнитного потока F от радиуса R.

Зависимость 1 - перед началом процесса смещения электронов с равновесной орбиты.

Зависимости 2, 3, 4, 5 - в момент достижения порогового значения магнитного потока в пределах равновесной орбиты.

Зависимость 2 - при реализации устройства-аналога со смещением за счет доускорения электронов, зависимость 3 - при реализации предлагаемого устройства при малых импульсных ампер-витках обмоток смещения, зависимость 4 - при реализации предлагаемого устройства при больших импульсных ампер-витках обмоток смещения, зависимость 5 - при реализации устройства-прототипа со смещением за счет уменьшения индукции в области равновесной орбиты.

На фиг.4 - аксиальные распределения радиальной составляющей индукции BR на равновесной орбите.

Зависимость 1 - перед началом процесса смещения электронов с равновесной орбиты.

Зависимости 2, 3, 4, 5 - в момент достижения порогового значения магнитного потока в пределах равновесной орбиты.

Зависимость 2 - при реализации устройства-аналога со смещением за счет доускорения электронов, зависимость 3 - при реализации предлагаемого устройства при малых импульсных ампер-витках обмоток смещения, зависимость 4 - при реализации предлагаемого устройства при больших импульсных ампер-витках обмоток смещения, зависимость 5 - при реализации устройства-прототипа со смещением за счет уменьшения индукции в области равновесной орбиты.

На фиг.5 - аксиальные распределения радиальной составляющей индукции BR на радиусе положения мишени

Зависимость 1 - перед началом процесса смещения электронов с равновесной орбиты. Зависимости 2, 3, 4, 5 - в момент достижения порогового значения магнитного потока в пределах равновесной орбиты.

Зависимость 2 - при реализации устройства-аналога со смещением за счет доускорения электронов, зависимость 3 - при реализации предлагаемого устройства при малых импульсных ампер-витках обмоток смещения, зависимость 4 - при реализации предлагаемого устройства при больших импульсных ампер-витках обмоток смещения, зависимость 5 - при реализации устройства-прототипа со смещением за счет уменьшения индукции в области равновесной орбиты.

Источник тормозного излучения содержит магнитопровод 1, полюсы 2, обмотки возбуждения 3 на полюсах 2, центральные вкладыши 4, ускорительную камеру 5 с внешним радиусом RК между полюсами 2, мишень 6, расположенную на инжекторе 7 в ускорительной камере 5 на радиусе RM, большем радиуса равновесной орбиты R0, две системы обмоток смещения с противоположно направленными импульсными ампер-витками в конце цикла ускорения. Первая система содержит обмотки смещения 8 и 9, вторая система содержит обмотки смещения 10 и 11. Обмотки смещения 8, 9, 10, 11 расположены между ускорительной камерой 5 и магнитопроводом 1. В обмотках смещения первой системы ближних к полюсам обмоток смещения 8, 9 направление импульсных ампер-витков совпадает с направлением токов в обмотках возбуждения 3 на полюсах 2. Обмотки смещения 10 и 11 второй системы расположены с зазором Н относительно обмоток смещения 8, 9 первой системы ближних к полюсам обмоток смещения. Направление импульсных ампер-витков в обмотках смещения 10 и 11 противоположно направлению токов в обмотках возбуждения 3 и, соответственно, импульсных ампер-витков в обмотках смещения 8 и 9.

Обмотки смещения 10 и 11 расположены с зазором L между ними, меньшим, например, размера h ускорительной камеры 5 в аксиальном направлении.

Часть зазора, например, за пределами радиуса RFe между обмотками смещения 8 и 10, а также между обмотками смещения 9 и 11, заполнена магнитным материалом 12.

Системы обмоток выполнены с возможностью изменения амплитуд импульсных ампер-витков.

В цикле работы устройства нарастающий ток в обмотках возбуждения 3 создает нарастающий магнитный поток в магнитопроводе 1, центральных вкладышах 4, полюсах 2, межполюсном пространстве и, при наличии, в магнитном материале 12 в зазорах Н между обмотками смещения 8 и 10, 9 и 11. В момент оптимального соответствия между напряжением инжекции инжектора 7 и индукцией магнитного поля в пространстве между полюсами 2 часть электронов из инжектора 7 в ускорительной камере 5 захватывается в ускорение на равновесной орбите, радиус которой задается параметрами центральных вкладышей 4 и распределением магнитной индукции в пространстве между полюсами 2, задаваемым профилем полюсов 2 и, при наличии, магнитным материалом 12 в зазорах Н между обмотками смещения 8 и 10, 9 и 11.

Под действием электрического поля, индуцированного нарастающим магнитным потоком, электроны ускоряются на равновесной орбите, совершая относительно нее бетатронные колебания, амплитуда которых в радиальном и аксиальном направлениях определяется степенью спадания магнитной индукции в пространстве между полюсами.

В конце цикла ускорения перед началом процесса смещения магнитное поле, созданное током обмоток возбуждения 3 в пространстве между полюсами 2, достигает величины индукции на равновесной орбите В0, с радиальным распределением индукции В (фиг.2, зависимость 1) в области между равновесной орбитой с радиусом, например, R0=50 мм, и мишенью на радиусе RM=70 мм в плоскости ускорения при потоке в пределах равновесной орбиты, равном Fo (фиг.3, зависимость 1, R=50 мм).

Действием импульсных магнитных полей первой и второй систем обмоток смещения запускается процесс смещения ускоренных электронов на мишень.

При этом превышением импульсного магнитного потока, создаваемого первой системой обмоток смещения, над импульсным магнитным потоком, создаваемым второй системой обмоток смещения, импульсно увеличивается магнитный поток в пределах пространства, охватываемого равновесной орбитой, до порогового значения смещения, например, на 20%, при котором электроны за счет резкого нарастания магнитного потока доускоряются до энергии, при которой магнитное поле, несмотря на некоторое одновременное увеличение магнитной индукции на равновесной орбите, не может удерживать электроны на равновесной орбите.

Достижение порогового значения потока одновременно сопровождается увеличением спада магнитной индукции В в пространстве между равновесной орбитой и радиальным положением мишени 6.

Пороговому значению смещения соответствует распределение магнитной индукции В в пространстве между равновесной орбитой и радиальным положением мишени 6 (фиг.2, зависимости 3, 4) с большим спадом, чем до запуска процесса смещения (фиг.2, зависимость 1) и при реализации смещения в устройстве-прототипе (фиг.2, зависимость 5) и в устройстве-аналоге (фиг.2, зависимость 2), реализующем смещение электронов с равновесной орбиты на мишень за счет их доускорения при таком же пороговом импульсном возрастании потока в пределах равновесной орбиты.

При изменении величины ампер-витков первой системы обмоток смещения 8, 9 и второй системы обмоток смещения 10, 11 с поддержанием порогового превышения величины ампер-витков первой системы над величиной ампер-витков второй системы происходит смещение при одном и том же доускорении электронов, но при различном радиальном спаде индукции В. Зависимостям 4 на фиг. 2, 3 соответствуют ампер-витки первой системы, в 3,8 раз большие ампер-витков первой системы, соответствующих зависимостям 3. Изменением величин ампер-витков первой и второй систем обмоток смещения обеспечивается, например, множество радиальных распределений индукции В между зависимостями 3 и 4 с соответствующими спадами.

Увеличенным спадам соответствуют увеличенные аксиальные градиенты (фиг.4, 5) радиальной составляющей индукции.

Возрастающие от положения равновесной орбиты (фиг.4) к радиальному положению мишени (фиг.5) и регулируемые изменением ампер-витков систем обмоток смещения аксиальные градиенты (зависимости 3, 4) предлагаемого устройства превышают аксиальные градиенты известных устройств (зависимости 2, 5).

Увеличенным и регулируемым аксиальным градиентам соответствуют увеличенные и регулируемые аксиальные силы, действующие на электроны при их отклонении от плоскости смещения (ускорения), что приводит к регулируемому уменьшению амплитуды аксиальных колебаний электронов в процессе смещения и, значит, к регулируемому уменьшению аксиального размера облучаемой области поверхности мишени и, соответственно, к регулируемому уменьшению аксиального размера фокусного пятна тормозного излучения.

В то же время регулируемому увеличенному спаду соответствует регулируемый увеличенный шаг спиральных траекторий смещения электронов с равновесной орбиты на мишень, что приводит к одновременному регулируемому возрастанию радиального размера облучаемой области поверхности мишени и, соответственно, к регулируемому увеличению размера фокусного пятна тормозного излучения в радиальном направлении.

Тормозное излучение из мишени 6 с уменьшенным аксиальным размером фокусного пятна и возможностью регулирования его соотношения с радиальным размером выходит через стенку ускорительной камеры и зазор между обмотками 10, 11 второй системы на облучаемый объект.

Коммутацией импульсных ампер-витков систем обмоток смещения от цикла ускорения к циклу устройство обеспечивает коммутацию соотношения размеров фокусного пятна от цикла ускорения к циклу в заданном диапазоне, от минимального размера в радиальном направлении при большом размере в аксиальном направлении до минимального размера в аксиальном направлении при большом размере в радиальном направлении.

Похожие патенты RU2482641C1

название год авторы номер документа
ИСТОЧНИК ТОРМОЗНОГО ИЗЛУЧЕНИЯ 2011
  • Сорокин Владимир Борисович
RU2468545C1
ИСТОЧНИК ТОРМОЗНОГО ИЗЛУЧЕНИЯ 2011
  • Сорокин Владимир Борисович
RU2482642C1
ИСТОЧНИК ТОРМОЗНОГО ИЗЛУЧЕНИЯ С ФОКУСНЫМ ПЯТНОМ МАЛЫХ РАЗМЕРОВ 2011
  • Сорокин Владимир Борисович
RU2462844C1
УСТРОЙСТВО ДЛЯ СБРОСА ПУЧКА УСКОРЕННЫХ В БЕТАТРОНЕ ЭЛЕКТРОНОВ НА МИШЕНЬ 2009
  • Зенков Дмитрий Иванович
  • Куропаткин Юрий Петрович
RU2400949C1
СПОСОБ ПОЛУЧЕНИЯ ФОКУСНОГО ПЯТНА ТОРМОЗНОГО ИЗЛУЧЕНИЯ МАЛЫХ РАЗМЕРОВ В ЦИКЛИЧЕСКОМ УСКОРИТЕЛЕ ЗАРЯЖЕННЫХ ЧАСТИЦ 1994
  • Пушин В.С.
  • Чахлов В.Л.
RU2072643C1
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ УСКОРЕННЫХ ЭЛЕКТРОНОВ В БЕТАТРОНЕ 2009
  • Кашковский Виктор Васильевич
  • Иванилова Татьяна Сергеевна
RU2408903C9
ИСТОЧНИК ПРОНИКАЮЩЕГО ИЗЛУЧЕНИЯ 1986
  • Филимонов А.А.
  • Звонцов А.А.
  • Чахлов В.Л.
SU1400475A1
СПОСОБ ИНДУКЦИОННОГО УСКОРЕНИЯ ЭЛЕКТРОНОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1986
  • Мынка А.А.
  • Романов В.В.
  • Буров Г.И.
SU1386007A1
БЕТАТРОН С КОРРЕКТИРОВКОЙ ОСИ ВЫВЕДЕННОГО ЭЛЕКТРОННОГО ПУЧКА 2023
  • Маликов Евгений Львович
RU2809178C2
СПОСОБ ГЕНЕРАЦИИ УСКОРЕННЫХ ПОЗИТРОНОВ 2013
  • Сорокин Владимир Борисович
RU2530735C1

Иллюстрации к изобретению RU 2 482 641 C1

Реферат патента 2013 года ИСТОЧНИК ТОРМОЗНОГО ИЗЛУЧЕНИЯ

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий. Источник тормозного излучения содержит магнитопровод, полюсы, обмотки возбуждения, центральные вкладыши, ускорительную камеру, мишень, две системы обмоток смещения с противоположно направленными импульсными ампер-витками в конце цикла ускорения. Обмотки смещения расположены между ускорительной камерой и магнитопроводом. В обмотках первой системы, образуемой ближними к полюсам обмотками смещения, направление импульсных ампер-витков совпадает с направлением токов в обмотках возбуждения, а обмотки второй системы расположены между обмотками первой системы с зазорами относительно обмоток первой системы и между собой. Первая система обмоток смещения выполнена с амплитудой импульсных ампер-витков, большей амплитуды импульсных ампер-витков второй системы. Техническим результатом является уменьшение размера фокусного пятна тормозного излучения в аксиальном направлении с возможностью регулирования соотношения размеров фокусного пятна в аксиальном и радиальном направлениях. 5 ил.

Формула изобретения RU 2 482 641 C1

Источник тормозного излучения, содержащий магнитопровод, полюсы, обмотки возбуждения на полюсах, центральные вкладыши, ускорительную камеру между полюсами, мишень, расположенную в ускорительной камере на радиусе, большем радиуса равновесной орбиты, две системы обмоток смещения с противоположно направленными импульсными ампер-витками в конце цикла ускорения, отличающийся тем, что обмотки смещения расположены между ускорительной камерой и магнитопроводом, в обмотках смещения первой системы, образуемой ближними к полюсам обмотками смещения, направление импульсных ампер-витков совпадает с направлением токов в обмотках возбуждения на полюсах, а обмотки смещения второй системы расположены между обмотками смещения первой системы с зазорами относительно обмоток смещения первой системы и между собой, причем первая система обмоток выполнена с импульсными ампер-витками в конце цикла ускорения, большими импульсных ампер-витков второй системы обмоток.

Документы, цитированные в отчете о поиске Патент 2013 года RU2482641C1

СПОСОБ ПОЛУЧЕНИЯ ФОКУСНОГО ПЯТНА ТОРМОЗНОГО ИЗЛУЧЕНИЯ МАЛЫХ РАЗМЕРОВ В ЦИКЛИЧЕСКОМ УСКОРИТЕЛЕ ЗАРЯЖЕННЫХ ЧАСТИЦ 1994
  • Пушин В.С.
  • Чахлов В.Л.
RU2072643C1
УСТРОЙСТВО ДЛЯ СБРОСА ПУЧКА УСКОРЕННЫХ В БЕТАТРОНЕ ЭЛЕКТРОНОВ НА МИШЕНЬ 2009
  • Зенков Дмитрий Иванович
  • Куропаткин Юрий Петрович
RU2400949C1
УСТРОЙСТВО для ОКРАСКИ ИЗДЕЛИЙ МЕТОДОМ ОКУНАНИЯ 0
  • И. В. Пискунов, И. И. Слуцкий, В. В. Кирсанов Белов М. С. Миркин
SU238375A1
JP 0011168000 A, 22.06.1999.

RU 2 482 641 C1

Авторы

Сорокин Владимир Борисович

Даты

2013-05-20Публикация

2011-10-12Подача