Изобретение относится к области нанотехнологий, используемых для нанесения покрытий, и может найти применение в ракетостроении, авиационной и машиностроительной промышленности.
Известен способ нанесения покрытий [1], в котором при помощи плазменного распыления порошков материалов микронных размеров сверхзвуковыми потоками плазмы в камерах с пониженным давлением наносятся покрытия на подложку. При этом осуществляется истечение в камеру недорасширенной струи плазмы с частицами напыляемого вещества. Во время нанесения покрытия в камере поддерживается динамический вакуум, т.е. процесс происходит в камере, в которую, с одной стороны, из плазмотрона поступает плазма, а с другой стороны, постоянно ведется откачка атмосферы камеры вакуумными насосами. Получающиеся при помощи плазменного напыления в динамическом вакууме покрытия обладают хорошей адгезией (65-70, МПа) и максимальной плотностью (пористость 0,1-0,2%). Это объясняется тем, что в этом случае происходит дополнительное диспергирование и частичное испарение напыляемого вещества, в результате чего напыление производится мелкими частицами, которые скрепляются друг с другом дополнительно при помощи наночастиц, образующихся из паровой фазы.
Недостатком данного способа является то, что в покрытии при этом остается достаточно высокий уровень напряжений. Одним из способов снижения уровня напряжений является увеличение пористости покрытия до ~ 3,5-5%, который реализуется при плазменном напылении на воздухе, но в этом случае, к сожалению, имеется относительно низкий уровень адгезии (25-35 МПа) [2].
Задачей предлагаемого изобретения является существенное улучшение рабочих характеристик покрытия (например, теплозащитных) за счет создания наноструктурированного в поперечном направлении покрытия, в этом случае происходит совмещение положительных свойств покрытий, получающихся при плазменном напылении в динамическом вакууме и при плазменном напылении на воздухе.
Технический результат достигается заявляемым способом нанесения теплозащитного наноструктурированного покрытия плазменным распылением порошка, который включает поддержание динамического вакуума в камере для нанесения покрытия и напыление слоя покрытия, отличающимся тем, что осуществляют поочередное напыление слоя покрытия пористостью 0,1-0,2% из мелкодисперсных частиц и наночастиц порошка с использованием недорасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, меньшим статического давления в струе плазмы с распыляемым порошком на входе в камеру, а затем напыление слоя покрытия пористостью 3,5-5,0% из пластифицированных частиц порошка с использованием перерасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, большим статического давления в струе плазмы с распыляемым порошком на входе в камеру, при этом поочередное напыление осуществляют до получения требуемого покрытия.
Газодинамические отличия в недорасширенных и перерасширенных струях приведены в [3].
Изобретение поясняется фигурами.
На фиг.1 представлена фотография, соответствующая истечению воздушной струи из сопла с числом Маха, равным 3, в воздушное пространство на режиме недорасширения.
На фиг.2 представлена фотография, соответствующая истечению воздушной струи из сопла с числом Маха, равным 3, в воздушное пространство на режиме перерасширения.
На фиг.3 представлена схема расположения плазмотрона 1 и подложки 2, на которую наносится покрытие (режим недорасширения плазменной струи).
На фиг.4 представлена фотография покрытия, полученного под воздействием недорасширенной плазменной струи.
На фиг.5 представлена схема расположения плазмотрона 1 и подложки 2, на которую наносится покрытие (режим перерасширения плазменной струи).
На фиг.6 представлена фотография покрытия, полученного под воздействием перерасширенной плазменной струи.
В недорасширенной струе (фиг.1) происходит сильное расширение плазмы, истекающей из сопла. При этом внутри струи зарождается висячий скачок уплотнения, имеющий бочкообразную форму. Важно иметь в виду, что область течения сильно недорасширенной струи, ограниченная висячим скачком уплотнения, имеет такое же распределение параметров, которое реализовывалось бы на этом участке при истечении плазмы в вакуум с теми же условиями на срезе сопла [3]. Это приводит к тому, что внутри висячего скачка газ непрерывно разгоняется до скоростей ~ 2 км/с; статическое давление на линиях тока при этом сильно падает, что приводит к конденсации паровой фазы напыляемого вещества с образованием наночастиц.
Сильно недорасширенная струя плазмы, определяемая низким уровнем динамического вакуума в камере (~ 0,5-1,0 Торр), содержащая плазмообразующий газ, расплавленные частицы порошка и материал в паровой фазе, в которую он частично перешел в плазмотроне и сверхзвуковом сопле плазмотрона 3, истекает в камеру с образованием висячего скачка уплотнения 4, внутри которого реализуется сверхзвуковое течение плазмы. Покрытие в этом случае состоит из мелких частиц 5, диспергированных из исходного расплавленного материала, скрепленных друг с другом наночастицами 6, образованными из конденсированной паровой фазы напыляемого вещества (фиг.3).
Пример 1.
Данный пример относится к получению покрытия, состоящего из мелкодисперсных частиц и наночастиц оксида циркония. В этом примере использовался плазмотрон (мощность 10 кВт), число Маха на срезе сопла - 3.8, диаметр выходного сечения сопла - 18 мм, напыляемый материал - порошок оксида циркония с размерами частиц 5-10 мкм. Давление в вакуумной камере поддерживалось на уровне - 0.5 Торр, статическое давление на срезе сопла плазмотрона - 25 Торр. Результат напыления на пластину, помещенную в вакуумной камере, приведен на фиг.4. Диагностика покрытия на растровом электронном микроскопе показала, что напыленный слой состоит из мелкодисперсных частиц и наночастиц, размер которых значительно меньше исходных частиц порошка.
На фиг.5 представлена схема, аналогичная представленной на фиг.3, но для случая истечения в камеру струи плазмы на перерасширенном режиме, определяемом повышенным, относительно первого случая, уровнем динамического вакуума в камере (~50-100 Торр). В случае истечения струи плазмы в вакуумную камеру в перерасширенном режиме (фиг.2), висячий скачок уплотнения вырождается из бочкообразной формы в изобарическую область 7 (фиг.5), внутри которой частицы не разгоняются и статическое давление на линиях тока не падает. В этом случае покрытие образуется из более крупных частиц, т.к. в струе в этом случае не происходит диспергирование расплавленных частиц в достаточно большом объеме по сравнению с первым случаем. Покрытие в этом случае имеет большую пористость, чем в первом случае.
Пример 2.
В данном примере параметры плазмотрона остаются теми же, что и в примере 1, но давление в вакуумной камере поддерживалось на уровне 50 Торр, что дает перерасширенный режим течения в плазме, истекающей в вакуумную камеру. Результат напыления оксида циркония на пластину, расположенную в вакуумной камере, приведен на фиг.6. Из фотографии, изображенной на фиг.6, видно, что покрытие состоит из крупных, пластифицированных при ударе о поверхность частиц, гораздо больших по размеру, чем в примере 1.
Меняя уровни давления в камере можно, не открывая камеру, поочередно наносить слои из мелкодисперсных частиц и наночастиц (адгезия 65-70 МПа, пористость 0,1-0,2%) и слои из крупных пластифицированных частиц (адгезия 25-35 МПа, пористость 3,5-5,0%) одним и тем же порошком напыляемого вещества (см. фиг.7). Таким образом наносится требуемое число слоев для выполнения защитных функций покрытия, которое, обладая на интерфейсах с подложкой и между слоями хорошей когезией, имеет при этом низкий уровень напряжений в нем.
Предлагаемое техническое решение позволяет достаточно просто получать наноструктурированное в поперечном направлении покрытие, полученное при напылении одним и тем же порошком в одной и той же камере, которое обладает низким уровнем напряжений в нем и повышенной устойчивостью к воздействию на него, например, многоразовых термоциклических нагрузок.
Использованные источники
1. В.В.Кудинов, Г.В.Бобров. Нанесение покрытий напылением. Теория, технология и оборудование. - М.: «Металлургия», 1992, стр.144-148.
2. Л.Х.Болдеев, Б.М.Захаров, В.М.Иванов и др. «Увеличение термостойкости газотермического теплозащитного покрытия». Металловедение и термическая обработка металлов, 2002, №3, с.32-36.
3. B.C.Авдуевский, Э.А.Ашратов, А.В.Иванов, У.Г.Пирумов. Газодинамика сверхзвуковых неизобарических струй. - М.: Машиностроение, 1989.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ | 2011 |
|
RU2462536C1 |
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ | 2010 |
|
RU2436862C1 |
Способ плазменного нанесения наноструктурированного теплозащитного покрытия | 2017 |
|
RU2683177C1 |
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ ПЛАЗМЕННЫМ НАПЫЛЕНИЕМ В ДИНАМИЧЕСКОМ ВАКУУМЕ | 2014 |
|
RU2586932C1 |
СПОСОБ ПОЛУЧЕНИЯ ГРАДИЕНТНОГО НАНОКОМПОЗИТНОГО ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ | 2019 |
|
RU2714345C1 |
СПОСОБ НАНЕСЕНИЯ НАНОПОКРЫТИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2371379C1 |
Теплозащитное покрытие | 2017 |
|
RU2675005C1 |
ПЛАЗМОТРОН ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ | 2007 |
|
RU2366122C1 |
ПЛАЗМАТРОН ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ В ДИНАМИЧЕСКОМ ВАКУУМЕ | 2013 |
|
RU2546974C1 |
Способ нанесения износостойкого покрытия на детали газотурбинной установки | 2023 |
|
RU2813538C1 |
Изобретение относится к области нанотехнологий, используемых для нанесения покрытий, и может найти применение в ракетостроении, авиационной и машиностроительной промышленности. Осуществляют поддержание динамического вакуума в камере для нанесения покрытия и проводят поочередное напыление слоя покрытия пористостью 0,1-0,2% из мелкодисперсных частиц и наночастиц порошка с использованием недорасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, меньшим статического давления в струе плазмы с распыляемым порошком на входе в камеру, а затем напыление слоя покрытия пористостью 3,5-5,0% из пластифицированных частиц порошка с использованием перерасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, большим статического давления в струе плазмы с распыляемым порошком на входе в камеру. Поочередное напыление осуществляют до получения требуемого покрытия. Получается наноструктурированное теплозащитное покрытие с пониженными напряжениями и повышенной устойчивостью к воздействию термоциклических нагрузок. 7 ил., 2 пр.
Способ нанесения теплозащитного наноструктурированного покрытия плазменным распылением порошка, включающий поддержание динамического вакуума в камере для нанесения покрытия и напыление слоя покрытия, отличающийся тем, что осуществляют поочередное напыление слоя покрытия пористостью 0,1-0,2% из мелкодисперсных частиц и наночастиц порошка с использованием недорасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, меньшим статического давления в струе плазмы с распыляемым порошком на входе в камеру, а затем напыление слоя покрытия пористостью 3,5-5,0% из пластифицированных частиц порошка с использованием перерасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, большим статического давления в струе плазмы с распыляемым порошком на входе в камеру, при этом поочередное напыление осуществляют до получения требуемого покрытия.
МИТИН Б.С | |||
Нанесение покрытий напылением | |||
Теория, технология и оборудование | |||
- М.: Металлургия, 1992, с.144-148 | |||
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2395620C1 |
Способ определения концентрациичАСТиц B диСпЕРСНОМ пОТОКЕ гАзА | 1978 |
|
SU805125A1 |
US 20080115477 A1, 22.05.2008 | |||
Глушитель шума выпуска двигателя внутреннего сгорания | 1989 |
|
SU1686199A1 |
Авторы
Даты
2013-05-27—Публикация
2011-12-16—Подача