СВЕРХПРОВОДЯЩИЙ ПРИБОР НА ОСНОВЕ МНОГОЭЛЕМЕНТНОЙ СТРУКТУРЫ ИЗ ДЖОЗЕФСОНОВСКИХ ПЕРЕХОДОВ Российский патент 2013 года по МПК H01L39/22 

Описание патента на изобретение RU2483392C1

Изобретение относится к криоэлектронным приборам и может быть использовано в измерительной технике, радиотехнических и информационных системах, работающих при низких температурах, для усиления слабых сигналов СВЧ-диапазона, а также в качестве детектора слабых магнитных полей.

Известен сверхпроводниковый магнетометр на основе джозефсоновских переходов (ДП), реализованный на параллельной цепочке сверхпроводящих квантовых интерферометров (СКВИДов) переменной площади (СКИФ-структура) (патент WO 0125805, Schopohl et al., 12.04.2001; патент WO 2004114463, Oppenlaender J. et al., 29.12.2004). За счет интерференции откликов некратных площадей форма отклика напряжения от приложенного магнитного поля такой СКИФ-структуры имеет один большой минимум в нуле магнитного поля.

Недостатком такого магнетометра является низкое значение выходного импеданса, что затрудняет использование параллельной СКИФ-структуры для высокочастотных устройств. Также СВЧ-устройства на основе параллельной СКИФ-структуры не обеспечивают необходимой линейности усиления сигнала и не позволяют добиться большого сигнала на выходе.

Известен также СВЧ-усилитель, состоящий из ДП (патент RU 2353051 C2, 06.06.2007) на основе линейных цепочек СКВИДов постоянного тока, имеющих повышенный коэффициент усиления и высокую линейность отклика напряжения на магнитную компоненту электромагнитного сигнала в полосе частот 1-10 ГГц (прототип предлагаемого технического решения).

Устройство-прототип представляет собой широкополосный сверхпроводящий СВЧ-усилитель, который содержит входной элемент, предназначенный для подачи СВЧ-сигнала и преобразования его в магнитный поток, воздействующий на последовательную цепочку двухконтактных СКВИДов; источник постоянного тока смещения, являющийся средством задания режима магнитного поля смещения, подключенный индуктивным образом к каждому из СКВИДов указанной цепочки СКВИДов. Данная последовательная цепочка СКВИДов, образованная из сегментов, подключается к выходному элементу таким образом, чтобы получить на нем суммарное изменение напряжения. Указанные входной и выходной элементы выполнены в виде сверхпроводящей полосковой линии передачи.

Основными недостатками прототипа являются:

1) уменьшение амплитуды вольт-полевой характеристики, а следовательно, и коэффициента усиления вследствие подавления зависимости критического тока от приложенного магнитного поля из-за проникновения магнитного поля в ДП, которое не учитывалось при моделировании конструкции усилителя;

2) неидеальная развязка входа и выхода из-за конструктивных особенностей электромагнитной связи, которая выполнена на основе связанных параллельно расположенных двухпроводных линий, что приводит к наличию ненулевой взаимной индукции;

3) неоптимальная связь по магнитному полю входной линии со СКИФ-структурой из-за быстрого спадании поля при выходе за пределы двухпроводной линии: поля параллельных проволок вычитаются вне проволок, что уменьшает взаимную индукцию входной цепи и петель СКВИДов;

4) предполагаемая широкополосность отклика трудно осуществима при наличии ограничения на размер СКИФ-структуры - прототип должен иметь размеры больше или порядка длины волны, так как основан на поглощении бегущей волны, при этом по мере затухания волны вклад активных элементов будет падать, в противном случае согласование возможно за счет демпфирующих резисторов, вызывающих неизбежное поглощение (значительной части) сигнала.

Анализ уровня техники, в том числе и прототипа, показывает, что общим недостатком конструкций устройств, выполненных как на основе низкотемпературных металлических, так и купратных сверхпроводников и реализованных как на основе регулярных цепочек СКВИДов, так и нерегулярных СКИФ-структур, является заметное уменьшение амплитуды вольт-полевой характеристики из-за разброса параметров ДП и влияния индуктивностей СКВИДов.

Целью изобретения является:

1) повышение коэффициента усиления и обеспечение высокой линейности отклика напряжения на магнитную компоненту электромагнитного сигнала сверхпроводящего прибора в полосе частот 0,1-10 ГГц на основе СКИФ-структуры, состоящей из ДП, характеризуемых неизбежно существующим разбросом параметров;

2) оптимизация развязки между входом и выходом с целью предотвращения просачивания входного сигнала на выход устройства;

3) повышение чувствительности устройства за счет оптимизации связи по магнитному полю между входной линией и СКИФ-структурой;

4) повышение помехозащищенности устройства.

Поставленная цель достигается тем, что сверхпроводящий прибор на основе многоэлементной структуры из джозефсоновских переходов, содержащий чип (бикристаллическую подложку), включающий в себя линию задания входного электромагнитного сигнала в виде сверхпроводящей полосковой линии передачи, предназначенную для подачи СВЧ-сигнала и преобразования его в магнитный поток, и многоэлементную сверхпроводящую структуру из джозефсоновских переходов (ДП), состоящую из последовательного соединения сверхпроводящих двухконтактных квантовых интерферометров (СКВИДов), имеющих некратные площади, представляющих собой сверхпроводящий квантовый интерференционный фильтр (СКИФ-структуру), имеющий повышенный коэффициент усиления и высокую линейность отклика напряжения на магнитную компоненту электромагнитного сигнала в полосе частот 0,1-10 ГГц, а также выходной элемент, выполненный в виде сверхпроводящей полосковой линии передачи, согласно изобретению содержит согласующую плату, предназначенную для задания входного электромагнитного сигнала в резонансную цепь СКИФ-структуры на чипе и снятия выходного сигнала с помощью микрополосковой линии и передачи его на выходной коаксиальный разъем, при этом на одной стороне согласующей платы размещены входная и выходная микрополосковые линии, а на другой стороне платы располагается резонатор, выполненный в виде П-образной щелевой линии длиной λ/2, размеры ДП, входящие в многоэлементную сверхпроводящую структуру, удовлетворяют условию: w<4λJ, где w - ширина ДП, λJ - джозефсоновская глубина проникновения магнитного поля, предложенное решение основано на низкодобротном резонансе в петле входной линии задания входного электромагнитного сигнала, при этом СКИФ-структура располагается внутри петли входной линии, не имеющей демпфирующих элементов, в качестве сверхпроводника использовано соединение редкоземельных купратов общей формулы ReBa2Cu3O7-х, где Re - редкоземельный металл, а слабая связь образована бикристаллической границей.

Поставленная цель достигается также тем, что согласующая плата выполнена из ламината с двусторонней металлизацией, толщина t и диэлектрическая проницаемость ε материала ламината выбраны обеспечивающими расчетное значение волнового сопротивления СВЧ-линий.

Существо изобретения поясняется на чертежах:

фиг.1 - эквивалентная электрическая схема патентуемого прибора для случая его применения для усиления СВЧ-сигнала, где a1…an - площади СКВИДов, входящих в многоэлементную структуру из ДП; IB - постоянный ток задания смещения; IRF - высокочастотный ток, который протекает через линию задания входного сигнала и преобразуется в магнитный поток в контурах СКИФ-структуры; С1 и С2 - емкости подстроечных конденсаторов;

фиг.2 - согласующая плата, где (1) - входная микрополосковая линия, (2) - П-образный щелевой резонатор, (3) - подводящие микрополосковые линии, (4) - выходная микрополосковая линия, (5) - чип со СКИФ-структурой;

фиг.3 - зависимость напряжения V от магнитного потока Ф в СКИФ-структуре; ΔV - максимальный размах характеристики, Ф0 - квант магнитного потока, ФВ - поток смещения, соответствующий рабочей точке, Фi - регистрируемый внешний магнитный поток, равный произведению регистрируемого тока Ii, протекаемого через линию задания входного сигнала на чипе, и взаимной индукции Mi между данной линией и СКИФ-структурой, V0 - отклик СКИФ-структуры на регистрируемый внешний магнитный поток;

фиг.4 - семейство вольт-амперных характеристик (ВАХ) СКИФ-структуры при различных значения приложенного магнитного поля.

Устройство представляет собой сверхпроводящий прибор, который содержит: (i) чип, включающий в себя линию задания входного электромагнитного сигнала в виде сверхпроводящей полосковой линии передачи СВЧ-сигнала и многоэлементную сверхпроводящую структуру из ДП, расположенную внутри петли входной линии и состоящую из последовательного соединения СКВИДов, имеющих некратные площади, представляющих собой СКИФ-структуру, имеющую повышенный коэффициент усиления и высокую линейность отклика напряжения на магнитную компоненту электромагнитного сигнала в полосе частот 0,1-10 ГГц, (ii) согласующую плату, предназначенную для задания входного электромагнитного сигнала в резонансную цепь СКИФ-структуры на чипе и снятия выходного сигнала с помощью микрополосковой линии и передачи его на выходной коаксиальный разъем. Через линию задания также возможна подача постоянного тока смещения для задания рабочей точки. Линейные размеры ДП, входящие в многоэлементную сверхпроводящую структуру, должны удовлетворять условию: w<4λJ, где w - линейный размер ширины тонкой пленки ДП, пересекающей бикристаллическую границу, λJ - джозефсоновская глубина проникновения магнитного поля. При этом обеспечивается режим работы многоэлементной структуры, определяемый проникновением магнитного поля в ДП, который характеризуется фраунгоферовой зависимостью (типа sin(x)/x) критического тока от приложенного магнитного поля.

На согласующей плате происходит переход от коаксиального разъема на микрополосковую линию, а затем переход на кольцевого резонатор, в разрыв которого может быть включена линия задания СКИФ-структуры. После преобразования (усиления) сигнала СКИФ-структурой сигнал с чипа снимается с помощью микрополосковой линии и подается на выходной коаксиальный разъем.

Предлагаемое техническое решение содержит следующие основные элементы: чип, эквивалентная электрическая схема которого приведена на фиг.1, и согласующую плату, изображение которой представлено на фиг.2. Согласующая плата предназначена для задания входного электромагнитного сигнала в резонансную цепь СКИФ-структуры, расположенную на чипе. На плате происходит переход от коаксиального разъема на микрополосковую линию, а затем переход на кольцевого резонатор, в разрыв которого может быть включена линия задания СКИФ-структуры. Плата выполнена из ламината с двусторонней металлизацией толщиной t=1,0 мм и диэлектрической проницаемостью керамического изолятора ε=9,2, выбранных из условия удовлетворения согласования импедансов многоконтактной СКИФ-структуры и волнового сопротивления микрополосковых линий на согласующей плате, с использованием известных соотношений для полосковых линий передач. Входная (1) и выходная (4) микрополосковые линии находятся на одной стороне двухсторонней платы. На другой стороне платы находится резонатор, выполненный в виде П-образной щелевой линии (2), который возбуждается пересекающим его входной микрополосковой линией (1). Открытый конец микрополосковой линии (1) образует четвертьволновой шлейф, который обеспечивает режим короткого замыкания в плоскости пересечения щелевой линии. Щелевой резонатор (2) полуволновой длины является неизлучающим и не вносит потерь. В силу противофазного возбуждения двух микрополосковых линий (3) в точке их присоединения к чипу (5) токи в них однофазны. После преобразования (усиления) сигнала СКИФ-структурой сигнал с чипа снимается с помощью микрополосковой линии и подается на выходной коаксиальный разъем. Приведенная развязка входа и выхода платы оптимизирована таким образом, что поле входного сигнала и выходной ток не взаимодействуют в силу балансной конструкции сигнальных цепей.

Напряжение на СКИФ-структуре обеспечивается заданием тока смещения IB. Высокочастотный ток IRF, протекающий по петле задания входного сигнала, создает в каждом СКВИДе магнитный поток ΔФk=MkIRF, где Mk - коэффициент взаимной индукции между k-ым СКВИДом (площадью ak, k=1…n) и линией задания входного сигнала. Значения емкостей C1, C2 и индуктивности линии задания входного сигнала L0 определяются из условия резонанса fRF=1/(2π√(С1+С2)*L0) для обеспечения наибольшей амплитуды тока в линии, подключенной к СВЧ-цепи задания сигнала на плате, к которой подключался чип со СКИФ-структурой. При использовании конденсаторов удается реализовать согласование со СКИФ-структурой в полосе 200 МГц (при центральной частоте 1,5 ГГц) при потерях 1,2 дБ.

Предлагаемая конструкция чипа, содержащего СКИФ-структуру, может быть настроена в широком диапазоне частот на полосу, составляющую порядка 20-30% от центральной частоты за счет компромиссного сочетания компактности и резонансных свойств входной цепи, что делает ее более помехозащищенной. Предложенное решение основано на низкодобротном резонансе в петле входной линии задания, при этом СКИФ-структура располагается внутри петли входной линии задания, не имеющей демпфирующих элементов, что означает минимально возможный уровень потерь сигнала.

Предлагаемое устройство работает следующим образом.

На фиг.3 показан механизм преобразования входного потока Фi в выходное напряжение V0 при фиксированном значении постоянного магнитного потока ФВ. Входной поток Фi=MiQVi/(Zi+Ri), где Mi - взаимная индуктивность между петлей задания входного сигнала и СКИФ-структурой, Q - добротность входного резонансного контура, Zi - входной импеданс СКИФ-структуры. Выходное напряжение V0 можно определить из выражения V0=VФФi, где VФ=∂V/∂Фi - передаточная характеристика СКИФ-структуры, которая определяется максимальным размахом выходного напряжения ΔV, который пропорционален характеристическому напряжению VC ДП, и квантом магнитного потока Ф0.

Максимально возможная связь по магнитному полю (чувствительность) осуществляется за счет двух факторов: во-первых, за счет помещения СКИФ-структуры в пучность доля, расположенную между полосковыми линиями, во-вторых, за счет резонансного увеличения тока сигнала во входной цепи, расположенной на согласующей плате.

В рассмотренной конфигурации СКИФ-структуры устройство работает в режиме, когда вольт-полевая характеристика в основном определяется фраунгоферовой зависимостью критического тока отдельных ДП. При этом вклад в величину преобразования магнитного поля в напряжение дают как циркулирующие токи, так и индуцированный магнитный поток. Входной сигнал индуцирует экранирующие токи в сверхпроводящих петлях каждого из элементов СКИФ-структуры. Ток в петле, индуцированный внешним магнитным полем, преобразуется в ток, циркулирующий в ДП. Такая трансформация позволяет обеспечить требуемую индуктивную связь ДП и входного контура, что, в свою очередь, способствует увеличению усиления СВЧ-сигнала.

Мощность насыщения СКВИДа, работающего без обратной связи, пропорциональна величине характеристического напряжения VC=ICRN, где IC - критический ток, RN - нормальное сопротивление. Использование купратных сверхпроводников позволяет получать ДП с характеристическим напряжением VC, которое может достигать 1 мВ уже при азотной температуре.

Увеличение динамического диапазона может быть получено за счет использования последовательной или параллельной цепочки СКВИДов. Однако технологический разброс параметров ДП (IC и RN) не позволяет достигать эффективного сложения откликов от всех СКВИДов в цепочке. Эта проблема может быть решена путем применения многоэлементной структуры из СКВИДов, имеющих некратные площади сверхпроводящих петель, так называемые сверхпроводящие квантовые интерференционные фильтры (СКИФы) последовательного или параллельного типов. В основу формирование отклика СКИФа заложено именно условие некратности площади СКВИДов. Динамический диапазон как параллельной, так и последовательной многоэлементной структуры увеличивается с ростом числа N СКВИДов пропорционально . В последовательной структуре СКВИДов увеличивается амплитуда выходного сигнала и выходной импеданс. Такое увеличение динамического диапазона обеспечивается без следящей цепи обратной связи.

Боковая модуляция на вольт-полевой зависимости подавляется с увеличением числа N СКВИДов в цепочке за счет интерференции откликов отдельных СКВИДов с разными площадями (с разными периодами модуляции откликов), что также приводит к сглаживанию склонов основного пика отклика СКИФ-структуры.

На фиг.4 показано семейство ВАХ СКИФ-структуры, состоящей из N=20 последовательно включенных СКВИДов, измеренной при 15 фиксированных значениях приложенного магнитного поля. Вследствие разброса критических токов ДП наблюдаются скачки напряжения, которые обусловлены переходом в резистивное состояние СКВИДов в структуре увеличением тока смещения IB. По мере увеличения приложенного магнитного поля ВАХ становится более гладкой.

В качестве сверхпроводникового материала использовано соединение редкоземельных купратов с общей формулой ReBa2Cu3O7-х, где Re - редкоземельный металл. Среди купратных сверхпроводниковых ДП наибольшей воспроизводимостью параметров обладают бикристаллические переходы, которые формируются за счет контакта двух монокристаллических частей пленки, кристаллографические оси которых взаимно развернуты на угол 45°>θ>20°, а бикристаллическая граница обладает свойством слабой связи.

Все элементы чипа могут быть выполнены с помощью фотолитографии и размещены на одной диэлектрической подложке. Технология изготовления таких структур известна, поэтому в настоящем описании не приводится. Соединение чипа и согласующей платы обеспечивается известными методом бондирования низкоиндуктивными металлическими проволоками.

Таким образом, технический результат предлагаемого устройства состоит в повышении коэффициента усиления и обеспечении высокой линейности отклика напряжения на магнитную компоненту электромагнитного сигнала СКИФ-структуры, оптимизации развязки между входом и выходом согласующей платы, повышении чувствительности устройства за счет оптимизации связи по магнитному полю между входной линией и СКИФ-структурой, повышении помехозащищенности устройства.

Похожие патенты RU2483392C1

название год авторы номер документа
СВЕРХПРОВОДЯЩАЯ КВАНТОВАЯ РЕШЕТКА НА ОСНОВЕ СКИФ-СТРУКТУР 2015
  • Соловьев Игорь Игоревич
  • Корнев Виктор Константинович
  • Кленов Николай Викторович
  • Колотинский Николай Васильевич
  • Шарафиев Алексей Владимирович
RU2620760C2
СВЕРХПРОВОДЯЩИЙ ШИРОКОПОЛОСНЫЙ СВЧ-УСИЛИТЕЛЬ 2007
  • Корнев Виктор Константинович
  • Соловьев Игорь Игоревич
  • Кленов Николай Викторович
RU2353051C2
СВЧ-УСИЛИТЕЛЬ НА ОСНОВЕ ВЫСОКОТЕМПЕРАТУРНОГО СКВИДА С ЧЕТЫРЬМЯ ДЖОЗЕФСОНОВСКИМИ КОНТАКТАМИ 2013
  • Соловьев Игорь Игоревич
  • Корнев Виктор Константинович
  • Кленов Николай Викторович
  • Шарафиев Алексей Владимирович
  • Калабухов Алексей Сергеевич
  • Чухаркин Максим Леонидович
  • Снигирев Олег Васильевич
RU2544275C2
СВЧ-УСИЛИТЕЛЬ НА ОСНОВЕ ВЫСОКОТЕМПЕРАТУРНОГО СКВИДа 2006
  • Калабухов Алексей Сергеевич
  • Снигирев Олег Васильевич
RU2325004C1
УСИЛИВАЮЩИЙ СВЕРХПРОВОДЯЩИЙ МЕТАМАТЕРИАЛ 2014
  • Шитов Сергей Витальевич
  • Эйсмонт Станислав Викторович
  • Устинов Алексей Валентинович
RU2579813C1
СВЕРХПРОВОДЯЩИЙ НЕЙРОН ДЛЯ МНОГОСЛОЙНОГО ПЕРСЕПТРОНА 2019
  • Щеголев Андрей Евгеньевич
  • Соловьев Игорь Игоревич
  • Кленов Николай Викторович
  • Бакурский Сергей Викторович
  • Больгинов Виталий Владимирович
  • Терешонок Максим Валерьевич
  • Куприянов Михаил Юрьевич
RU2734581C1
ДЕТЕКТОР ТЕРАГЕРЦОВОГО ИЗЛУЧЕНИЯ НА ДЖОЗЕФСОНОВСКОЙ ГЕТЕРОСТРУКТУРЕ 2010
  • Девятов Игорь Альфатович
  • Куприянов Михаил Юрьевич
RU2437189C1
Активный сверхпроводящий детектор 2022
  • Шитов Сергей Витальевич
RU2801961C1
ФЛАКСОННЫЙ БАЛЛИСТИЧЕСКИЙ ДЕТЕКТОР 2015
  • Соловьев Игорь Игоревич
  • Куприянов Михаил Юрьевич
  • Снигирев Олег Васильевич
  • Кленов Николай Викторович
RU2592735C1
ДЖОЗЕФСОНОВСКИЙ ПАРАМЕТРИЧЕСКИЙ УСИЛИТЕЛЬ БЕГУЩЕЙ ВОЛНЫ НА ОСНОВЕ БИ-СКВИДОВ 2022
  • Юсупов Ренат Альбертович
  • Тарасов Михаил Александрович
  • Кошелец Валерий Павлович
  • Колотинский Николай Васильевич
  • Корнев Виктор Константинович
RU2792981C1

Иллюстрации к изобретению RU 2 483 392 C1

Реферат патента 2013 года СВЕРХПРОВОДЯЩИЙ ПРИБОР НА ОСНОВЕ МНОГОЭЛЕМЕНТНОЙ СТРУКТУРЫ ИЗ ДЖОЗЕФСОНОВСКИХ ПЕРЕХОДОВ

Изобретение относится к криоэлектронным приборам и может быть использовано в измерительной технике. Изобретение обеспечивает повышение коэффициента усиления и высокую линейность отклика напряжения на магнитную компоненту электромагнитного сигнала сверхпроводящего прибора в полосе частот 0,1-10 ГГц, оптимизацию развязки между входом и выходом для предотвращения просачивания входного сигнала на выход устройства, повышение чувствительности устройства за счет оптимизации связи по магнитному полю между входной линией и СКИФ-структурой, повышение помехозащищенности устройства. Сверхпроводящий прибор содержит следующие основные элементы: чип, содержащий СКИФ-структуру, и согласующую плату, предназначенную для задания входного электромагнитного сигнала в резонансную цепь СКИФ-структуры на чипе и снятия выходного сигнала с помощью микрополосковой линии и передачи его на выходной коаксиальный разъем. СКИФ-структура, расположенная внутри петли линии задания входного электромагнитного сигнала, имеет повышенный коэффициент усиления и высокую линейность отклика напряжения на магнитную компоненту электромагнитного сигнала в полосе частот 0,1-10 ГГц и размеры джозефсоновских переходов (ДП), удовлетворяющие условию, при котором обеспечивается режим работы, характеризующийся фраунгоферовой зависимостью критического тока от магнитного поля, проникающего в ДП. 1 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 483 392 C1

1. Сверхпроводящий прибор на основе многоэлементной структуры из джозефсоновских переходов, содержащий чип (бикристаллическую подложку), включающий в себя линию задания входного электромагнитного сигнала в виде сверхпроводящей полосковой линии передачи, предназначенную для подачи СВЧ-сигнала и преобразования его в магнитный поток и многоэлементную сверхпроводящую структуру из джозефсоновских переходов (ДП), состоящую из последовательного соединения сверхпроводящих двухконтактных квантовых интерферометров (СКВИДов), имеющих некратные площади, представляющих собой сверхпроводящий квантовый интерференционный фильтр (СКИФ-структуру), имеющий повышенный коэффициент усиления и высокую линейность отклика напряжения на магнитную компоненту электромагнитного сигнала в полосе частот 0,1-10 ГГц, а также выходной элемент, выполненный в виде сверхпроводящей полосковой линии передачи, отличающийся тем, что содержит согласующую плату, предназначенную для задания входного электромагнитного сигнала в резонансную цепь СКИФ-структуры на чипе и снятия выходного сигнала с помощью микрополосковой линии и передачи его на выходной коаксиальный разъем, при этом на одной стороне согласующей платы размещены входная и выходная микрополосковые линии, а на другой стороне платы располагается резонатор, выполненный в виде П-образной щелевой линии, длиной λ/2,
размеры ДП, входящие в многоэлементную сверхпроводящую структуру, удовлетворяют условию: w<4λJ, где w - ширина ДП, λJ - джозефсоновская глубина проникновения магнитного поля,
СКИФ-структура располагается внутри петли входной линии задания входного электромагнитного сигнала, не имеющей демпфирующих элементов, в качестве сверхпроводника использовано соединение редкоземельных купратов общей формулы ReBa2Cu3O7-x, где Re - редкоземельный металл, а слабая связь образована бикристаллической границей.

2. Сверхпроводящий прибор по п.1, отличающийся тем, что согласующая плата выполнена из ламината с двусторонней металлизацией, толщина t и диэлектрическая проницаемость ε материала ламината выбраны обеспечивающими расчетное значение волнового сопротивления СВЧ-линий.

Документы, цитированные в отчете о поиске Патент 2013 года RU2483392C1

СВЕРХПРОВОДЯЩИЙ ШИРОКОПОЛОСНЫЙ СВЧ-УСИЛИТЕЛЬ 2007
  • Корнев Виктор Константинович
  • Соловьев Игорь Игоревич
  • Кленов Николай Викторович
RU2353051C2
СВЧ-УСИЛИТЕЛЬ НА ОСНОВЕ ВЫСОКОТЕМПЕРАТУРНОГО СКВИДа 2006
  • Калабухов Алексей Сергеевич
  • Снигирев Олег Васильевич
RU2325004C1
US 6066948 A, 23.05.2000
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 483 392 C1

Авторы

Овсянников Геннадий Александрович

Константинян Карен Иванович

Шадрин Антон Викторович

Шитов Сергей Витальевич

Даты

2013-05-27Публикация

2011-12-14Подача