ПОДВОДНЫЙ ГАЗОПЕРЕКАЧИВАЮЩИЙ АГРЕГАТ ДЛЯ МНОГОНИТОЧНОГО ТРУБОПРОВОДА Российский патент 2013 года по МПК F04D13/08 F04D25/06 F02C6/06 

Описание патента на изобретение RU2485353C1

Изобретение относится к транспортировке углеводородного сырья по проложенным по морскому дну трубопроводам большой протяженности.

Известен газоперекачивающий агрегат (патент RU №2403416, опубл. 10.11.2010), который содержит газотурбинный двигатель и механизм сжатия газа, включающий ротор, установленный в подшипниках и снабженный уплотнениями, воздухоочистительное устройство, выхлопную систему с выхлопным трактом для удаления продуктов сгорания и шумоглушители.

Известна компрессорная станция магистральных газопроводов с электроприводными газоперекачивающими агрегатами (патент RU №2272938, опубл. 27.03.2006), которая содержит газоперекачивающие агрегаты с приводом от синхронных электродвигателей, внешнюю высоковольтную электрическую сеть, трансформаторы, шинопроводы, электрические выключатели, при этом компрессорная станция снабжена дополнительными энергетическими газотурбинными установками, содержащими воздушные компрессоры, камеры сгорания, силовые газовые турбины, электрогенераторы; силовые газовые турбины дополнительных энергетических газотурбинных установок соединены общим валом с электрогенераторами; камеры сгорания дополнительных энергетических газотурбинных установок соединены дополнительными трубопроводами топливного газа с магистральным газопроводом, которые подключены к нему по ходу газа перед газоперекачивающими агрегатами; компрессорная станция также снабжена дополнительными шинопроводами и электрическими выключателями, связывающими электрогенераторы дополнительных энергетических газотурбинных установок с электродвигателями газоперекачивающих агрегатов и трансформаторами.

Недостаток таких газоперекачивающих агрегатов заключается в том, что они не могут быть применены для транспорта углеводородного сырья по магистральному газопровода по морскому дну от места морской добычи газа на континент из-за невозможности их работы и обслуживания в подводном положении в условиях полной изоляции от атмосферного воздуха и большого давления окружающей среды - морской воды.

Известна атомная подводная газоперекачивающая станция (патент RU №2154231, опубл. 10.08.2000). Станция содержит легкий и прочный корпус, разделенный прочными переборками на герметичные отсеки. В среднем отсеке размещен водо-водяной атомный реактор, соединенный паропроводами с газовыми турбонагнетателями, которые расположены на агрегатных рампах в смежных с реакторным отсеках, а приемные и напорные ветви газопроводов турбонагнетателей проходят по межтрубному пространству и соединены с выгородками стыковочных узлов, с помощью которых станция подключается к магистральному газопроводу.

Недостатком станции является наличие ядерного реактора, что существенно усложняет структуру и снижает ее безопасность и экологичность. Сложная структура приводит к снижению ее надежности, что в условия подводной эксплуатации является наиболее актуальной проблемой.

Известен подводный модуль компрессора (патент RU №2329405, опубл. 20.07.2008), принятый за прототип. Модуль имеет охранный кожух, содержащий электродвигатель и компрессор, приводным образом соединенные, по меньшей мере, одним валом, причем компрессор и электродвигатель изолированы друг от друга по меньшей мере одним уплотнением, в результате чего охранный кожух разделен на первый и второй отсеки, в которых расположены компрессор и электродвигатель соответственно.

Недостаток этого изобретения заключается в том, что используется только один газовый компрессор, что снижает эффективность.

Технический результат изобретения - повышение надежности работы газоперекачивающего агрегата в подводном положении на несколько подводных магистральных газопроводов при эксплуатации одного электропривода.

Технический результат достигается тем, что подводный газоперекачивающий агрегат для многониточного трубопровода, имеющий охранный кожух, разделенный уплотнениями на отсеки, в которых размещены по отдельности электродвигатель и компрессоры, приводным образом соединенные одним валом, который опирается на магнитные подшипники, дополнительно снабжен компрессорами в количестве не менее двух, имеющими единый с электродвигателем вал, преобразователем частоты, системой управления электродвигателем, при этом магнитные подшипники снабжены силовыми элементами и системой управления магнитными подшипниками, а охранный кожух разделен на отсеки не менее трех, при этом в первом отсеке расположены система управления электродвигателем и система управления магнитными подшипниками, во втором отсеке - преобразователь частоты и силовые элементы магнитных подшипников, в третьем - электродвигатель, в последующих отсеках - компрессоры, причем отсеки компрессоров изолированы друг от друга с помощью уплотнений. Охранный кожух может быть ориентирован горизонтально.

В нем могут быть установлены два радиальных и один осевой магнитные подшипники.

Силовые элементы магнитных подшипников могут быть выполнены на полностью управляемых полупроводниковых ключах IGBT, собранных по мостовой схеме.

Система управления магнитными подшипниками может быть выполнена по дифференциальной схеме регулирования положения вала агрегата по всем направлениям.

Уплотнения могут быть выполнены в виде уплотнительной пары, одна из частей

которой вращающаяся и закреплена на валу, а другая неподвижная и закреплена на охранном кожухе, при этом на рабочей поверхности вращающейся части нанесены динамические пазы.

На чертеже представлена структура подводного газоперекачивающего агрегата для многониточного трубопровода с тремя компрессорами для трех ниток трубопровода. Управляющие сигналы и электроэнергию подводный газоперекачивающий агрегат получает с контролирующего объекта (не показано), например, расположенной вблизи плавучей платформы или береговой компрессорной станции, которая принимает углеводородное сырье от агрегата. На дне подводный газоперекачивающий агрегат расположен горизонтально. Охранный кожух 12 содержит шесть изолированных друг от друга с помощью уплотнений отсеков. В первом отсеке 8 расположены система управления электродвигателем 1 и система управления магнитными подшипниками 2. Через входы первого отсека 8 поступают управляющие сигналы с контролирующего объекта и электроэнергия. Выходы системы управления электродвигателем 1 и системы управления магнитными подшипниками 2 соединены с преобразователем частоты 3 и силовыми элементами магнитных подшипников 4 соответственно. Установлены уплотнения 13 (13′ 13′′), выполненные в виде уплотнительной пары, одна из частей которой вращающаяся 15 (15′ 15′′) и закреплена на валу, а другая неподвижная 14 (14′ 14′′) и закреплена на охранном кожухе 12, при этом на рабочей поверхности вращающейся части нанесены динамические пазы.

Преобразователь частоты 3, установленный во втором отсеке 9, электрически соединен с электродвигателем 5, расположенным в третьем отсеке 10. Вращаясь, электродвигатель 5 приводит во вращательное движение компрессоры 7, 7′, 7′′, которые расположены в отсеках 11, 11′, 11′′. Электродвигатель 5 и компрессоры 7, 7′, 7′′ имеют единый вал, который опирается на два радиальных магнитных подшипника 6, 6′ и один осевой магнитный подшипник 6′′.

Электроэнергию радиальные магнитные подшипники 6, 6′ и осевой магнитный подшипник 6′′ получают от силовых элементов магнитных подшипников 4, расположенных в отсеке 9. Регулирование скорости и производительности компрессоров производится путем частотного регулирования скорости электродвигателя 5.

Система управления магнитными подшипниками 2 выполнена по дифференциальной схеме регулирования положения вала агрегата по всем направлениям. Например, из пяти каналов регулирования положения вала агрегата: по два в каждом радиальном магнитном подшипнике и один в осевом.

Устройство работает следующим образом. Пуск агрегата начинается с включения радиальных магнитных подшипников 6, 6′ и осевого магнитного подшипника 6′′. Система управления магнитными подшипниками 2 подает управляющие сигналы на силовые элементы магнитных подшипников 4, которые уже путем непосредственного электромагнитного воздействия обеспечивают центровку вала агрегата в зазоре радиальных магнитных подшипников 6, 6′ и осевом магнитном подшипнике 6".

После этого начинают разгон электродвигателя 5. Для регулирования скорости электродвигателя 5 используют векторные алгоритмы управления. Регулировку скорости вращения осуществляют частотным способом. Разгон электродвигателя 5 осуществляют изменением частоты напряжения с помощью преобразователя частоты 3. Преобразователь частоты 3 выполнен на полностью управляемых полупроводниковых элементах. Посредством электродвигателя 5 осуществляют вращение всех компрессоров 7, 7′, 7′′, которые обеспечивают компремирование и транспорт сырья по подводным магистральным газопроводам. Охранный кожух 12 при нахождении агрегата в подводном положении обеспечивает полную герметизацию внутренних частей агрегата, а также исключает утечки транспортируемого сырья наружу.

Уплотнения 13 (13′ 13′′) обеспечивают герметизацию отсеков друг от друга, таким образом, транспортируемое сырье из отсеков с компрессорами 7, 7′, 7′′ не может проникнуть и заполнить отсеки с электродвигателем 5, преобразователем частоты 3 и силовыми элементами магнитных подшипников 4 и отсек с системой управления магнитными подшипниками 2 и системой управления электродвигателем 1 и нарушить работу агрегата.

Таким образом, обеспечивается повышение надежности работы газоперекачивающего агрегата в подводном положении на несколько подводных магистральных газопроводов при эксплуатации одного электропривода.

Похожие патенты RU2485353C1

название год авторы номер документа
ИНТЕГРИРОВАННЫЙ ПЕРЕКАЧИВАЮЩИЙ АГРЕГАТ ДЛЯ ТРАНСПОРТИРОВКИ УГЛЕВОДОРОДОВ ПО ПОДВОДНЫМ И КОНТИНЕНТАЛЬНЫМ ТРУБОПРОВОДАМ 2016
  • Васильев Богдан Юрьевич
RU2613794C1
МНОГОФУНКЦИОНАЛЬНЫЙ ИНТЕГРИРУЕМЫЙ МОТОР-КОМПРЕССОР ДЛЯ ТРАНСПОРТИРОВКИ ФЛЮИДОВ ПО ПОДВОДНЫМ И КОНТИНЕНТАЛЬНЫМ ТРУБОПРОВОДАМ 2017
  • Васильев Богдан Юрьевич
  • Григорьев Павел Сергеевич
  • Демин Павел Валерьевич
RU2664604C1
Способ работы комбинированного газоперекачивающего агрегата компрессорной станции магистрального газопровода 2021
  • Лившиц Михаил Юрьевич
  • Шелудько Леонид Павлович
RU2778421C1
Компрессорная станция магистральных газопроводов с электроприводными газоперекачивающими агрегатами 2018
  • Бирюк Владимир Васильевич
  • Шелудько Леонид Павлович
  • Федорченко Дмитрий Геннадьевич
  • Ларин Евгений Александрович
  • Цыбизов Юрий Ильич
  • Шиманов Артём Андреевич
  • Урлапкин Виктор Викторович
RU2688640C1
ГАЗОПЕРЕКАЧИВАЮЩАЯ СТАНЦИЯ НА МОРСКОЙ ПЛАТФОРМЕ 2009
  • Болотин Николай Борисович
RU2388920C1
Способ работы компрессорной станции магистральных газопроводов 2015
  • Хрусталёв Владимир Александрович
  • Ларин Евгений Александрович
  • Новикова Маргарита Витальевна
RU2647742C2
АВТОНОМНЫЙ ГАЗОПЕРЕКАЧИВАЮЩИЙ ЭНЕРГЕТИЧЕСКИЙ КОМПЛЕКС МАГИСТРАЛЬНОГО ГАЗОПРОВОДА 2004
  • Степанов А.Ю.
  • Ануров Ю.М.
RU2256821C1
АТОМНАЯ ПОДВОДНАЯ ГАЗОПЕРЕКАЧИВАЮЩАЯ СТАНЦИЯ 2009
  • Болотин Николай Борисович
RU2419739C1
СПОСОБ РАБОТЫ КОМПРЕССОРНОЙ СТАНЦИИ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ С ГАЗОТУРБИННЫМИ И ЭЛЕКТРОПРИВОДНЫМИ ГАЗОПЕРЕКАЧИВАЮЩИМИ АГРЕГАТАМИ И ГАЗОТУРБОДЕТАНДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКОЙ 2019
  • Гордеев Андрей Анатольевич
  • Осипов Павел Геннадьевич
  • Шелудько Леонид Павлович
  • Бирюк Владимир Васильевич
RU2740388C1
СПОСОБ ОТБОРА ПРИРОДНОГО ГАЗА ИЗ ОТКЛЮЧЕННОГО УЧАСТКА МАГИСТРАЛЬНОГО ГАЗОПРОВОДА В МНОГОНИТОЧНОЙ СИСТЕМЕ (Варианты) И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (Варианты) 2016
  • Субботин Владимир Анатольевич
  • Безбородников Василий Степанович
  • Антипов Николай Иванович
RU2619669C1

Реферат патента 2013 года ПОДВОДНЫЙ ГАЗОПЕРЕКАЧИВАЮЩИЙ АГРЕГАТ ДЛЯ МНОГОНИТОЧНОГО ТРУБОПРОВОДА

Изобретение относится к транспортировке углеводородного сырья по проложенным по морскому дну трубопроводам большой протяженности. Газоперекачивающий агрегат имеет охранный кожух, разделенный уплотнениями на отсеки, в которых помещены по отдельности электродвигатель и компрессор, приводным образом соединенные одним валом, который опирается на магнитные подшипники. Агрегат дополнительно снабжен компрессорами в количестве не менее двух, имеющими единый с электродвигателем вал, преобразователем частоты, системой управления электродвигателем. Магнитные подшипники снабжены силовыми элементами и системой управления магнитными подшипниками, а охранный кожух разделен на отсеки не менее трех. В первом отсеке расположены система управления электродвигателем и система управления магнитными подшипниками, во втором отсеке - преобразователь частоты и силовые элементы магнитных подшипников, в третьем - электродвигатель. В последующих отсеках расположены компрессоры, причем отсеки компрессоров изолированы друг от друга с помощью уплотнений. Охранный кожух ориентирован горизонтально. На валу установлены два радиальных и один осевой магнитные подшипники. Силовые элементы выполнены на полностью управляемых полупроводниковых ключах IGBT, собранных по мостовой схеме. Система управления магнитными подшипниками выполнена по дифференциальной схеме регулирования положения вала агрегата по всем направлениям. Уплотнения выполнены в виде уплотнительной пары, одна из частей которой вращающаяся и закреплена на валу, а другая неподвижная и закреплена на охранном кожухе, при этом на рабочей поверхности вращающейся части нанесены динамические пазы. Техническим результатом является повышение надежности работы газоперекачивающего агрегата в подводном положении на несколько подводных магистральных газопроводов при эксплуатации одного электропривода. 5 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 485 353 C1

1. Подводный газоперекачивающий агрегат для многониточного трубопровода, имеющий охранный кожух, разделенный уплотнениями на отсеки, в которых помещены по отдельности электродвигатель и компрессоры, приводным образом соединенные одним валом, который опирается на магнитные подшипники, отличающийся тем, что он дополнительно снабжен компрессорами в количестве не менее двух, имеющими единый с электродвигателем вал, преобразователем частоты, системой управления электродвигателем, при этом магнитные подшипники снабжены силовыми элементами и системой управления магнитными подшипниками, а охранный кожух разделен на отсеки не менее трех, при этом в первом отсеке расположены система управления электродвигателем и система управления магнитными подшипниками, во втором отсеке - преобразователь частоты и силовые элементы магнитных подшипников, в третьем - электродвигатель, в последующих отсеках - компрессоры, причем отсеки компрессоров изолированы друг от друга с помощью уплотнений.

2. Агрегат по п.1, отличающийся тем, что охранный кожух ориентирован горизонтально.

3. Агрегат по п.1, отличающийся тем, что в нем установлены два радиальных и один осевой магнитные подшипники.

4. Агрегат по п.1, отличающийся тем, что силовые элементы магнитных подшипников выполнены на полностью управляемых полупроводниковых ключах IGBT, собранных по мостовой схеме.

5. Агрегат по п.1, отличающийся тем, что система управления магнитными подшипниками выполнена по дифференциальной схеме регулирования положения вала агрегата по всем направлениям.

6. Агрегат по п.1, отличающийся тем, что уплотнения выполнены в виде уплотнительной пары, одна из частей которой вращающаяся и закреплена на валу, а другая неподвижная и закреплена на охранном кожухе, при этом на рабочей поверхности вращающейся части нанесены динамические пазы.

Документы, цитированные в отчете о поиске Патент 2013 года RU2485353C1

ПОДВОДНЫЙ МОДУЛЬ КОМПРЕССОРА И СПОСОБ РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ПОДВОДНОМ МОДУЛЕ КОМПРЕССОРА 2004
  • Стинессен Хьелль Олав
  • Скофтеланн Хокон
RU2329405C2
ГАЗОПЕРЕКАЧИВАЮЩИЙ АГРЕГАТ 2009
  • Пыхтеев Виктор Григорьевич
  • Федоренко Николай Дмитриевич
  • Оболенский Олег Константинович
  • Ткачуков Лев Владимирович
  • Сказыткин Константин Анатольевич
RU2403416C1
Устройство к швейным машинам черезкрайного шва для ограничения кромок сшиваемого трикотажа 1951
  • Багдасаров Л.А.
SU96194A1
US 2005100462 А1, 12.05.2005
US 6398484 B1, 04.06.2002.

RU 2 485 353 C1

Авторы

Козярук Анатолий Евтихиевич

Васильев Богдан Юрьевич

Даты

2013-06-20Публикация

2012-01-11Подача