Изобретение относится к области геофизических исследований скважин и предназначено для определения в процессе измерения одновременно в нескольких расположенных равноудалено вдоль оси скважины точках удельного электрического сопротивления горных пород, окружающих обсаженную металлической колонной скважину.
Известен способ электрического каротажа обсаженных скважин на основе двухполюсного симметричного пятиэлектродного зонда [1]. Этим способом поддержание экстремума потенциала осуществляется при помощи расположенного в скважинном приборе автоматического аналогового автокомпенсатора, который управляется там же в скважинном приборе полезными сигналами в нановольтовом диапазоне, которые во много раз ниже сигналов-помех, связанных с тепловыми шумами, индукционными наводками, теллурическими токами, контактными электродными потенциалами и др., что приводит к неустойчивой работе этого автокомпенсатора и делает недоступным контроль за его работой, хотя индукционные наводки в этом случае устраняются. Поэтому этот способ не нашел применения в практике каротажа обсаженных скважин. Он также обладает малой скоростью записи, так как в цикле измерений регистрируется УЭС на одной точке по глубине.
Наиболее близким к изобретению по технической сущности является способ электрического каротажа обсаженных скважин, использующий многоэлектродный зонд, выполненный в виде последовательно и равноудалено расположенных вдоль оси скважины измерительных электродов [2]. В этом способе решается проблема повышения скорости записи использованием большого количества измерительных электродов, уменьшается влияние на результат индукционных наводок, за счет регистрации сигналов после определенной паузы от фронтов питающих прямоугольных импульсов, существенно компенсируются погрешности измерений за счет системы со встречным направлением тока.
Однако, предложенный способ обладает следующими недостатками, такими как:
влияние электромагнитных наводок на результат измерений в зоне слабых сигналов; так как закон изменения помехи экспоненциальный, то даже задержки регистрации длительностью в секунды не исключают их влияния на регистрируемые параметры, а дальнейшее увеличение задержек неэффективно, так как значительно уменьшает скорость каротажа (и ухудшает компенсацию погрешностей системы за счет влияния временных факторов);
плохая компенсация погрешностей, связанных с неоднородностью материала обсадной трубы, ее диаметра и несимметричности измерительных плеч прибора, а также в интервалах измерений, расположенных по глубине вблизи забоя скважины, что обусловлено близкими к нулю значениями так называемого коэффициента фокусировки из-за того, что питающие токи от электродов А1 и А2, протекающие по колонне в зоне измерительных электродов, разнятся на порядки; на практике проведение каротажа вблизи забоя скважины встречается достаточно часто.
В предложенном способе решается задача значительного уменьшения влияния указанных выше факторов на результаты измерений УЭС.
В результате комплекса исследований, выполненных аналитическими и численными методами на математических моделях обсаженных скважин, пересекающих неоднородный массив горных пород пластовой структуры, было установлено, что при определении УЭС горных пород через металлическую колонну надо учитывать не только измеряемые электрические параметры, но и диаметр обсадной колонны. Эта уточненная связь, выраженная в физических величинах, представляется формулой:
где ρ - УЭС;
UR - потенциал на поверхности обсадной трубы радиуса R;
Rc - погонное сопротивление обсадной трубы;
K0(0.004·R) - функция Макдональда нулевого порядка, в ее аргумент входит радиус обсадки R и численный коэффициент 0.004, имеющий размерность [1/м], который является эмпирическим и определен на основе обработки реальных скважинных данных. Отметим, что отсутствие учета радиуса обсадки может вызвать относительную погрешность в УЭС до 5% либо потребовать введения калибровочного коэффициента для каждого конкретного радиуса обсадки.
Входящие в выражение (1) величины должны быть измерены так, чтобы исключить влияние различных помех, вызванных условиями измерений.
В первую очередь это касается второй производной потенциала вдоль оси трубы.
Падение напряжения вдоль обсадной трубы связано с ее погонным сопротивлением и величиной тока I, проходящего через ее поперечное сечение:
Тогда вторая производная
В правой части этого равенства первый член соответствует оттеканию части тока в массив горных пород и всегда положителен, а второй в скважинных условиях измерений отвечает неоднородности материала трубы и несимметричности измерительных плеч прибора и меняет свой знак при изменении направления тока. Последнее свойство позволяет путем использования схем измерений с встречным направлением тока выделить из второй производной только связанную со свойствами горных пород часть. Традиционно для этого складываются измеренные при встречных направлениях тока конечно-разностные аналоги вторых производных - вторые разности, причем, та, что соответствует подаче тока во второй (нижний) электрод предварительно нормируется посредством умножения на так называемый коэффициент фокусировки kf с целью обеспечения эффекта равенства абсолютных значений тока в двух измерениях.
В процессе выполнения этой компенсационной операции информативные составляющие измерений используются неравнозначным образом, так как одна из них берется с коэффициентом kf, который, в зависимости от глубины нахождения прибора в скважине, принимает значения практически от нуля (вблизи забоя скважины) до величин, больших единицы.
Вблизи забоя скважины, где коэффициент kf часто составляет менее 0.1, он определяется с большой относительной погрешностью, поэтому его использование для исключения влияния условий измерений приводит к значительным погрешностям в определении истинного значения второй производной.
Предлагается для определения компенсированного значения второй производной использовать способ, в котором измеренные при встречных направлениях тока вторые разности непосредственно складываются, а для получения суммарного нулевого тока к их сумме прибавляется с некоторым коэффициентом а вторая производная, измеренная в режиме подачи тока между первым и вторым электродами (режим контроля условий измерений). В этом режиме вторая производная обусловлена только несимметричностью условий измерений и неоднородностью обсадки, так как ток проходит по обсадной трубе только на участке между токовыми электродами и равен току через токовые электроды, а оттока в массив практически нет (потенциал участка в среднем равен нулю). При этом вблизи забоя скважины значительно повышается точность определения второй производной, в том числе и за счет устранения индукционных наводок, которые в этом случае вычитаются.
Следует отметить, что время цикла в режиме контроля условий измерений может быть существенно меньше длительности остальных циклов, так как весь питающий ток проходит в зоне измерительных электродов и мало влияние помех, обуславливающих значительную часть погрешности измерений в других циклах. Поэтому введение этого цикла практически не увеличивает время каротажа.
Коэффициент α определяется выражением
где I(1,2), I(1,0), I(2,0) - величины токов, подаваемых между вторым и первым токовыми электродами, в верхний относительно электрода В, в нижний относительно электрода В соответственно;
Компенсированное значение второй производной выражается формулой
где
Сумма полей, получаемых в трех циклах измерений, имеет на рассматриваемой глубине нулевой ток по обсадной трубе и потенциал на ее поверхности
Погонное сопротивление обсадной колонны выражается через данные цикла контроля условий измерений:
С учетом (2), (3) и (4) выражение (1) для суммарного поля принимает вид:
Заметим, что все входящие в выражение (5) значения токов и вторых производных положительны. Отрицательной является стоящая в числителе первая производная потенциала при подаче тока с первого токового электрода во второй. В сочетании со знаком минус перед всем выражением это дает знак плюс для УЭС.
Применительно к каротажным данным используется конечно-разностный аналог выражения (5).
Обозначим L - расстояние между соседними измерительными электродами.
ΔU(1,0)up, ΔU(2,0)up и ΔU(1,2)up - разность потенциалов между средними верхним измерительными электродами при подаче тока в верхний токовый электрод, в нижний токовый электрод и между токовыми электродами соответственно;
ΔU(1,0)down, ΔU(2,0)down и ΔU(1,2)down - разность потенциалов между нижним и средним измерительными электродами при подаче тока в верхний токовый электрод, в нижний токовый электрод и между токовыми электродами соответственно;
ΔU(1,0), ΔU(2,0) и ΔU(1,2) - разность потенциалов между нижним и верхним измерительными электродами при подаче тока в верхний токовый электрод, в нижний токовый электрод и между токовыми электродами соответственно;
I(1,0), I(2,0) и I(1,2) - значение тока при его подаче в верхний токовый электрод, в нижний токовый электрод и между токовыми электродами соответственно.
Дифференциальным величинам соответствуют конечно-разностные аналоги
Для коэффициента а получается выражение
Конечно-разностный эквивалент выражения (5) равен
Следует отметить, что предлагаемый способ каротажа, эффективно компенсирующий помехи, может быть использован при различных формах питающих импульсов тока, например, прямоугольных, трапециидальных, синусоидальных. Применение двух последних дает определенные преимущества, так как более узкополосный спектр принимаемых сигналов повышает возможности фильтрации, а отсутствие острых фронтов, где возникают огромные переходные процессы за счет ЭДС самоиндукции кабеля, исключает необходимость применения специальных схем защиты кабеля и электронных узлов, что повышает надежность.
Изобретение поясняется чертежом на фиг.1, где представлена блок-схема устройства, реализующего предложенный способ. Здесь
1 - наземный источник питания токовых электродов двуполярными импульсами;
2 - переключатель тока;
3 - обратный токовый электрод В, заземляемый в произвольной точке дневной поверхности, на большом расстоянии от устья скважины;
4 - дневная поверхность;
5 - Nуд - удаленный электрод, присоединяется к устью обсадной колонны;
6 - обсадная колонна;
7 - скважинный прибор;
8 - токовый электрод А1;
9 - токовый электрод А2;
10 - цифровой измеритель электрического потенциала относительно удаленного электрода 5 - Nуд;
11 - цифровой измеритель разностей электрических потенциалов;
12, 13, 14, 15 - измерительные электроды;
16 - управляемый с дневной поверхности переключатель тока в токовые электроды 8 - А1 и 9 - А2.
Источники информации
1. Кашик А.С., Рыхлинский Н.И. и др. Способ электрического каротажа обсаженных скважин. Патент №2229735 от 22.04.2003, Бюл. №15,2004.
2. Рыхлинский Н.И., Кашик А.С. и др. Способ электрического каротажа обсаженных скважин. Патент №2408039 от 07.12.2009, Бюл. №36, 2010).
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ КАРОТАЖА СКВАЖИН, ОБСАЖЕННЫХ МЕТАЛЛИЧЕСКОЙ КОЛОННОЙ | 2011 |
|
RU2488852C1 |
Способ каротажа скважин, обсаженных металлической колонной | 2011 |
|
RU2630335C2 |
Устройство для каротажа скважин, обсаженных металлической колонной | 2011 |
|
RU2630991C1 |
УСТРОЙСТВО ДЛЯ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ЧЕРЕЗ МЕТАЛЛИЧЕСКУЮ КОЛОННУ | 2011 |
|
RU2508561C2 |
СПОСОБ И УСТРОЙСТВО ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННОЙ СКВАЖИНЫ | 2005 |
|
RU2536732C2 |
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН | 2009 |
|
RU2382385C1 |
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН | 2008 |
|
RU2361246C1 |
Способ и устройство электрического каротажа обсаженных скважин | 2018 |
|
RU2691920C1 |
СПОСОБ И УСТРОЙСТВО ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННОЙ СКВАЖИНЫ | 2005 |
|
RU2306582C1 |
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН | 2000 |
|
RU2172006C1 |
Изобретение относится к области геофизических исследований скважин и предназначено для определения удельного электрического сопротивления (УЭС) горных пород, окружающих обсаженную металлической колонной скважину. Сущность: используется зонд, выполненный в виде последовательно и равноудаленно расположенных вдоль оси скважины нескольких измерительных электродов и двух расположенных по разные стороны от них токовых электродов. Процесс измерений состоит из трех циклов, при которых поочередно подают двуполярные импульсы электрического тока: 1) между первым и вторым токовыми электродами (режим контроля условий измерений); 2) относительно электрода В в первый токовый электрод; 3) относительно электрода В во второй токовый электрод. В каждом цикле измеряют подаваемые токи и разности потенциалов между каждым измерительным электродом и электродами, отстоящими от него на один и на два интервала между упомянутыми электродами. Во втором и третьем циклах также измеряют потенциал одного из измерительных электродов. На основе оцифрованных результатов измерений трех циклов определяется удельное электрическое сопротивление на глубинах, соответствующих положениям измерительных зондов, кроме крайних, по соответствующей формуле, учитывающей диаметр обсадной колонны. Технический результат: повышение точности определения удельного электрического сопротивления. 1 ил.
Способ электрического каротажа обсаженных скважин с многоэлементным зондом, состоящим из N измерительных равноудаленных на расстояние L друг от друга вдоль оси скважины соседних электродов, за пределами и по разные стороны от которых располагают два токовых электрода, в которые поочередно подают двуполярные импульсы электрического тока относительно электрода В, и при каждой из подач тока измеряют потенциал электрического поля одного из измерительных электродов, подаваемые токи и разности потенциалов между каждым измерительным электродом и отстоящими от него на L и 2L измерительными электродами; на основе указанных измерений электрических сигналов определяют удельное электрическое сопротивление (УЭС) окружающих скважину горных пород,
отличающийся тем, что дополнительно вводят цикл контроля условий измерений, при котором двуполярные импульсы электрического тока подают между первым и вторым токовыми электродами; в этом цикле также измеряют подаваемые токи и разности потенциалов между каждым измерительным электродом и отстоящими от него на L и 2L измерительными электродами;
на основе полученных данных определяют УЭС в N-2 точках на глубинах, соответствующих расположению измерительных электродов с номерами 2÷N-1, при этом для нахождения каждого из упомянутых УЭС используют данные, относящиеся к трем соседним измерительным электродам, именуемым ниже «средний, верхний, нижний, крайние» и образующим измерительную тройку, средний из которых соответствует глубине, на которой измеряют УЭС;
для определения УЭС в конкретной точке выполняют следующие действия:
из данных, полученных при подаче тока между токовыми электродами, берут проходящий через них ток I(1,2), разность потенциалов между крайними измерительными электродами ΔU(1,2) и разность потенциалов либо между средним и верхним измерительным электродом ΔU(1,2)up, либо между средним и нижним измерительным электродом ΔU(1,2)down, по которым определяют вторую разность потенциалов Δ2U(1,2) по формуле Δ2U(1,2)=ΔU(1,2)-2ΔU(1,2)up или Δ2U(1,2)=2ΔU(1,2)down-ΔU(1,2) соответственно;
из данных, полученных при подаче тока I(1,0) между заземлением и верхним токовым электродом, берут потенциал одного из измерительных электродов U(1,0), разность потенциалов между крайними измерительными электродами ΔU(1,0) и разность потенциалов либо между средним и верхним измерительными электродами ΔU(1,0)up, либо между нижним и средним измерительными электродами ΔU(1,0)down, по которым определяют вторую разность потенциалов Δ2U(1,0) по формуле Δ2U(1,0)=ΔU(1,0)-2ΔU(1,0)up или Δ2U(1,0)=2ΔU(1,0)down-ΔU(1,0) соответственно;
из данных, полученных при подаче тока I(2,0) между заземлением и нижним токовым электродом, берут потенциал одного из измерительных электродов U(2,0), разность потенциалов между крайними измерительными электродами ΔU(2,0) и разность потенциалов либо между средним и верхним измерительными электродами ΔU(2,0)up, либо между нижним и средним измерительными электродами ΔU(2,0)down, по которым определяют вторую разность потенциалов Δ2U(2,0) по формуле Δ2U(2,0)=ΔU(2,0)-2ΔU(2,0)up или Δ2U(2,0)=2ΔU(2,0)down-ΔU(2,0) соответственно;
вычисляют УЭС горных пород по формуле
где
K0(0.004·R) - функция Макдональда нулевого порядка, в аргумент которой входит радиус обсадки R.
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН | 2009 |
|
RU2408039C1 |
СПОСОБ И УСТРОЙСТВО ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННОЙ СКВАЖИНЫ | 2005 |
|
RU2306582C1 |
СПОСОБ ИЗМЕРЕНИЯ ЭЛЕКТРОХИМИЧЕСКИХ СВОЙСТВ ФОРМАЦИЙ, ПРИЛЕГАЮЩИХ К СКВАЖИНЕ | 1991 |
|
RU2065957C1 |
УСТРОЙСТВО ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН | 2008 |
|
RU2361245C1 |
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН | 2006 |
|
RU2302019C1 |
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН | 2000 |
|
RU2172006C1 |
US 5543715 A, 06.08.1996 | |||
US 5043669 A, 27.08.1991 | |||
WO 2003054585 A1, 03.07.2003 | |||
US 6987386 B1, 17.01.2006 | |||
US 7388382 B2, 17.06.2008. |
Авторы
Даты
2013-08-20—Публикация
2011-11-18—Подача