РАМОЧНАЯ ДВУХВИТКОВАЯ АНТЕННА В ЗАЩИТНОМ КОРПУСЕ Российский патент 2013 года по МПК H01Q7/00 

Описание патента на изобретение RU2490761C2

Изобретение относится к области радиотехники, в частности к антенной технике, и может быть использовано в качестве приемных и передающих антенн средств связи декаметрового диапазона радиоволн.

Известна малогабаритная петлевая антенна (патент GB 2166000, МПК9 H01Q 7/00, опубл. 23.04.1986), содержащая проводящую петлю и два настроечных конденсатора, включенных в разрыве петлевого проводника симметрично относительно вывода антенны. Однако при использовании настроечных конденсаторов удается изменить лишь резонансную частоту контура, но нельзя добиться снижения коэффициента стоячей волны (КСВ) больше 2. В данном случае путем подбора емкости конденсатора удается скомпенсировать реактивную составляющую входного сопротивления антенны, но не удается достичь требуемой активной составляющей входного сопротивления антенны.

Наиболее близкой к заявляемой антенне является приемопередающая петлевая антенна (патент Российской Федерации 2081485, МПК9 H01Q 7/00, опубл. 10.06.1997), выполненная из двух разомкнутых проводящих петель и двух настроечных конденсаторов переменной емкости. Первые концы петель соединены между собой и с первыми выводами настроечных конденсаторов, вторые выводы которых соединены с другими концами петель, образующими выводы антенны. Указанные петли относительно их соединенных концов могут быть ориентированы пространственно одинаково или противоположно.

Недостаток прототипа обусловлен его низкой эффективностью. В диапазоне декаметровых радиоволн (10-100 м) активная часть входного сопротивления антенн составляет десятые доли и единицы Ом и обусловлена в основном потерями в проводнике петли, поскольку сопротивление излучения петли составляет тысячные и сотые доли Ом. Отношение сопротивления излучения к входному сопротивлению определяет коэффициент полезного действия (КПД) антенны, который составляет доли и единицы процентов.

Также недостатком прототипа можно считать то, что конструктивные элементы антенны не защищены от внешних климатических и механических воздействий и тем самым использование последних в составе мобильных комплексов связи затруднено.

Задачей изобретения является создание рамочной двухвитковой антенны в защитном корпусе, позволяющей получить высокое значение КПД.

Это достигается тем, что рамочная двухвитковая антенна в защитном корпусе, содержащая две разомкнутые проводящие петли, настроечный конденсатор переменной емкости, первые концы проводящих петель соединены между собой и образуют точку нулевого потенциала, согласно изобретению дополнена петлей связи, представленной одним витком коаксиального кабеля, внутренний проводник которого с одного конца соединен с точкой нулевого потенциала, а внешний проводник (экран кабеля) на расстоянии длины петли связи также соединен с точкой нулевого потенциала, второй конец коаксиального кабеля является выходной линией рамочной антенны, настроечный конденсатор переменной емкости своими выводами соединен со вторыми концами проводящих петель, которые образуют двухвитковую рамку и помещены совместно с настроечным конденсатором переменной емкости и петлей связи в защитный корпус из радиопрозрачного материала.

Проведенный анализ уровня техники позволил установить, что аналоги, характеризующие совокупность признаков, тождественных признакам заявленного технического решения, отсутствуют, что указывает на соответствие изобретения условию патентоспособности «новизна».

Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного объекта, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».

На фиг.1 показано конструктивно-схемное решение предлагаемой рамочной двухвитковой антенны в защитном корпусе в соответствии с изобретением.

Предлагаемая приемо-передающая антенна 1 содержит первую разомкнутую проводящую петлю 2, вторую разомкнутую проводящую петлю 3, настроечный конденсатор переменной емкости 4 и петлю связи 5. Первый конец 7 проводящей петли 2 соединен с первым концом проводящей петли 3 и образуют точку нулевого потенциала, второй конец 6 проводящей петли 2 соединен с первым выводом настроечного конденсатора переменной емкости 4, второй конец 8 проводящей петли 3 соединен со вторым выводом настроечного конденсатора переменной емкости 4. Петля связи 5 представляет собой отрезок коаксиального кабеля, внутренний проводник 9 которого соединен с точкой нулевого потенциала 7. Внешний проводник 10 коаксиального кабеля имеет поперечный кольцевой разрез 11. Петля связи 5 размещена в одной плоскости с проводящими петлями 2 и 3. Внешний проводник 10 коаксиального кабеля соединен гальванически с точкой нулевого потенциала 7, вторые концы петли связи 5 то есть внутренний проводник 9 коаксиального кабеля и внешний проводник 10 коаксиального кабеля являются выходной линией передачи 12 антенны 1, проводящие петли 2, 3 совместно с настроечным конденсатором переменной емкости 4 и петлей связи 5 помещены в защитный корпус антенны 13 из радиопрозрачного материала.

На фиг.2 показана эквивалентная схема предлагаемой рамочной двухвитковой антенны в защитном корпусе в соответствии с изобретением.

Рамочная двухвитковой антенна 1 представляет собой параллельный колебательный контур, состоящий из двух последовательно соединенных проводящих петель 2, 3 (индуктивностей L1 и L2) с точкой нулевого потенциала 7, емкости Ск настроечного конденсатора переменной емкости 4 и индуктивности петли связи 5 Lсв с выходной линей передачи антенны 12. В представленной эквивалентной схеме используется трансформаторная связь с коэффициентом трансформации Kтр.

Рассмотрим работу предлагаемой рамочной двухвитковой антенны в защитном корпусе в режиме приема. Величина емкости настроечного конденсатора переменной емкости 4 устанавливается такой, чтобы рамочная двухвитковая антенна 1 была настроенной в резонанс с рабочей частотой fp приемника. Падающее на рамочную двухвитковую антенну электромагнитное поле наводит в проводящих петлях 2 и 3 электродвижущую силу (ЭДС). В результате этого в точках 6 и 8 возникает разность потенциалов, под действием которой на внешней поверхности петель 2, 3 возникает ток. Наводимый в рамках 2 и 3 ток является источником ЭДС в петле связи 5, которая обеспечивает согласование сопротивления рамочной двухвитковой антенны 1 с выходной линией передачи 12. Согласование достигается подбором размеров петли связи 5.

Рассмотрим работу предлагаемой рамочной двухвитковой антенны в защитном корпусе в режиме передачи. Для эффективного излучения радиосигнала на частоте fпрд осуществляется согласование выхода передатчика с рамочной двухвитковой антенной с помощью настроечного конденсатора переменной емкости 4. Сигнал высокочастотных колебаний с выхода передатчика поступает на петлю связи 5, которая является продолжением линии передачи 12. Размеры петли связи подобраны из условия согласования выходе передатчика с рамочной двухвитковой антенной 1. С помощью петли связи 5 осуществляется трансформация волнового сопротивления коаксиального кабеля во входное сопротивление рамочной двухвитковой антенны 1 с частотой резонанса fр=fпрд. Возбуждаемый в рамочной двухвитковой антенне 1 ток высокой частоты преобразуется в энергию излучаемого электромагнитного поля.

Расчет характеристик предлагаемой рамочной двухвитковой антенны в защитном корпусе с помощью строгих электродинамических методов представляет серьезные математические трудности. Однако, учитывая малые по сравнению с рабочей длиной волны размеры проводящих петель 2 и 3, можно с достаточной для практических целей точностью составить эквивалентную схему предлагаемой рамочной двухвитковой антенны (фиг.2), и на основании данной схемы рассчитать ее характеристики.

В случае круглых петель диаметром D=0,85 м, изготовленных из проводника диаметром d=1,7 см и расположенных компланарно на расстоянии τ=8 см в однородной среде с магнитной проницаемостью µ0=4π·10-7 собственная индуктивность L0 и емкость рамочной двухвитковой антенны определяются C0 следующими выражениями:

L 0 = ( 1 + k ) μ 0 D ( l n 8 D d 1 . 7 5 ) , C 0 = π D 1 0 2 8 , 3 l o g ( ( τ d ) + ( τ d ) 2 1 ) .

где k = l n ( 4 π τ ( 3 τ 8 D ) ) ( 2 + τ 8 D ) l n ( 4 D τ ) 2 , 2 коэффициент взаимной связи проводящими петлями 2 и 3.

Значение емкости настроечного конденсатора переменной емкости (фиг.3) определяется из выражения: C к = 1 ( 2 π f 0 ) 2 L 0 C 0 .

Сопротивление излучения и сопротивление потерь рамочной двухвитковой антенны определяется соответственно выражениями:

R и з л = 1 6 0 π 6 D 4 λ 4 , R п о т = D 4 μ π f 0 1 0 6 d γ ,

где γ - удельная проводимость материала проводящих петель,

f0 - резонансная частота рамочной двухвитковой антенны,

µ - относительная магнитная проницаемость материала проводящих петель,

λ - длина волны радиоизлучения.

Потери в настроечном конденсаторе переменной емкости определяются выражением:

R r = t g δ 1 0 6 2 π f C к

где tgδ - тангенс угла потерь, в случае вакуумного конденсатора tgδ=10-4.

Добротность нагруженной антенны (фиг.4) определяется выражением:

Q н = 2 π f L 0 1 0 6 R и з л + R п о т + R к + R н

где R к = ρ с в К т р 2 - сопротивление нагрузки, ρсв - волновое сопротивление выходной линии передачи антенны, Ктр - коэффициент трансформации сопротивления выходной линии передачи антенны во входное сопротивление рамочной двухвитковой антенны.

КПД антенны (фиг.5) рассчитано в соответствии с выражением:

η = R и з л Q н R и з л + R п о т + R к + R н 1 0 0 % .

Повышение эффективности предлагаемой рамочной двухвитковой антенны в защитном корпусе по сравнению с эффективностью антенны-прототипа происходит вследствие снижения потерь на согласование контура рамочной двухвитковой антенны и выходной линии передачи антенны, и как следствие увеличением значения КПД антенны.

Размещение рамочной двухвитковой антенны внутри защитного корпуса позволяет защитить ее механические части от внешних климатических и механических воздействий и тем самым увеличить показатель надежности антенны, в случае использование последней в составе мобильных комплексов связи.

Работоспособность и преимущества по сравнению с антенной-прототипом были подтверждены испытаниями изготовленной антенны (фиг.6). При установке передающей и приемной антенн на крыше кунга автомобиля Зил-131 мобильного комплекса связи была осуществлена круглосуточная радиосвязь в диапазоне от 3 до 9 МГц с аналогичным комплексом, находящемся на удалении до 500 км, с требуемым качеством, при мощности передатчика 100 Вт.

Похожие патенты RU2490761C2

название год авторы номер документа
ТЕЛЕРАДИОАНТЕННА 1994
  • Шпади Андрей Леонидович
RU2092939C1
Малогабаритная рамочная антенна 2021
  • Банков Сергей Евгеньевич
  • Давыдов Александр Георгиевич
  • Вьюгин Петр Александрович
RU2776947C1
Рамочная антенна 2016
  • Фомин Дмитрий Геннадьевич
  • Войтович Николай Иванович
RU2645452C1
ПРИЕМОПЕРЕДАЮЩАЯ ПЕТЛЕВАЯ АНТЕННА 1994
  • Бульбин Ю.В.
  • Буянов Ю.И.
RU2081484C1
ПРИЕМОПЕРЕДАЮЩАЯ ПЕТЛЕВАЯ АНТЕННА 1994
  • Бульбин Ю.В.
  • Буянов Ю.И.
RU2081485C1
Приемопередающая антенна петлевого типа 2019
  • Алясев Алексей Александрович
  • Бондарев Василий Михайлович
  • Береза Сергей Борисович
  • Горн Василий Юрьевич
  • Кирсанов Алексей Андреевич
  • Корнеев Дмитрий Алексеевич
  • Лобов Константин Владимирович
  • Рыженко Юрий Владимирович
  • Ивенев Андрей Николаевич
RU2705513C1
АНТЕННА 2003
  • Ермолин М.В.
  • Лабинцев В.Б.
RU2254646C1
ВИБРАТОРНАЯ АНТЕННА 2014
  • Борейчук Анастасия Игоревна
  • Горбачев Анатолий Петрович
  • Кириллова Наталья Александровна
  • Шведова Анна Владимировна
RU2571156C2
ТОКОНЕСУЩЕЕ ДИНАМИЧЕСКОЕ ЗВЕНО 1995
  • Андреев А.В.
  • Куркин В.И.
RU2089954C1
МАЛОГАБАРИТНАЯ РЕЗОНАНСНАЯ РАМОЧНАЯ КОАКСИАЛЬНАЯ АНТЕННА 2014
  • Кисмерешкин Владимир Павлович
  • Колесников Андрей Викторович
RU2583758C1

Иллюстрации к изобретению RU 2 490 761 C2

Реферат патента 2013 года РАМОЧНАЯ ДВУХВИТКОВАЯ АНТЕННА В ЗАЩИТНОМ КОРПУСЕ

Изобретение относится к области радиотехники, в частности к антенной технике, и может быть использовано в качестве приемных и передающих антенн средств связи декаметрового диапазона радиоволн. Технический результат - повышение КПД антенны, защита от климатических и механических воздействий. Рамочная антенна (1) содержит первую разомкнутую проводящую петлю (2), вторую разомкнутую проводящую петлю (3), настроечный конденсатор переменной емкости (4) и петлю связи (5). Первый конец (7) проводящей петли (2) соединен с первым концом проводящей петли (3) и образуют точку нулевого потенциала, второй конец (6) проводящей петли (2) соединен с первым выводом настроечного конденсатора переменной емкости (4), второй конец (8) проводящей петли (3) соединен со вторым выводом настроечного конденсатора переменной емкости (4). Петля связи (5) представляет собой отрезок коаксиального кабеля, внутренний проводник (9) которого соединен с точкой нулевого потенциала (7). Внешний проводник (10) соединен гальванически с точкой нулевого потенциала (7), вторые концы петли связи (5) и внешний проводник (10) коаксиального кабеля являются выходной линией передачи (12) антенны (1), проводящие петли (2) и (3) совместно с настроечным конденсатором переменной емкости (4) и петлей связи (5) помещены в защитный корпус антенны (13) из радиопрозрачного материала. 6 ил.

Формула изобретения RU 2 490 761 C2

Рамочная двухвитковая антенна в защитном корпусе, содержащая две разомкнутые проводящие петли, настроечный конденсатор переменной емкости, первые концы проводящих петель соединены между собой и образуют точку нулевого потенциала, отличающаяся тем, что дополнена петлей связи, представленной одним витком из отрезка коаксиального кабеля, внутренний проводник которого с одного конца соединен с точкой нулевого потенциала, а внешний проводник на расстоянии длины петли связи также соединен с точкой нулевого потенциала, второй конец коаксиального кабеля является выходной линией рамочной антенны, настроечный конденсатор переменной емкости своими выводами соединен со вторыми концами проводящих петель, которые образуют двухвитковую рамку и помещены совместно с настроечным конденсатором переменной емкости и петлей связи в защитный корпус из радиопрозрачного материала.

Документы, цитированные в отчете о поиске Патент 2013 года RU2490761C2

ПРИЕМОПЕРЕДАЮЩАЯ ПЕТЛЕВАЯ АНТЕННА 1994
  • Бульбин Ю.В.
  • Буянов Ю.И.
RU2081485C1
АКТИВНАЯ ПЕТЛЕВАЯ АНТЕННА 2001
  • Бульбин Ю.В.
  • Буянов Ю.И.
  • Винокуров А.А.
  • Чуйков В.Д.
  • Якубов В.П.
RU2222848C2
АКТИВНАЯ ПЕТЛЕВАЯ АНТЕННА (ВАРИАНТЫ) 2001
  • Бульбин Ю.В.
  • Буянов Ю.И.
  • Винокуров А.А.
  • Чуйков В.Д.
  • Якубов В.П.
RU2193265C2
СПОСОБ ОБРАБОТКИ ПЫЛЯЩИХ ПОВЕРХНОСТЕЙ 2015
  • Вишневский Александр Витальевич
  • Балагуров Антон Анатольевич
  • Меланьин Андрей Геннадьевич
RU2615005C1
GB 2166000 А, 23.04.1986
ОДНОФОНТУРНОЕ УТОЧНО-ФУТЕРОВАННОЕ ОСНОВОВЯЗАНОЕ ПЕРЕПЛЕТЕНИЕ 0
SU334297A1

RU 2 490 761 C2

Авторы

Яковлев Юрий Николаевич

Пискун Владимир Александрович

Даты

2013-08-20Публикация

2011-08-09Подача