Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для применения в аппаратуре элементного анализа вещества на основе нейтронно-радиационных методов.
Известен малогабаритный генератор нейтронов, содержащий нейтронную трубку и высоковольтный источник напряжения питания, выполненный на накопительном конденсаторе, включенном между высоковольтным источником питания и первичной обмоткой высоковольтного импульсного трансформатора (в случае биполярного питания - первичными обмотками высоковольтного импульсного трансформатора). Геофизическая аппаратура. Недра, вып.43, 1970 г., с.132-146. Однако этот генератор нейтронов имеет малый ресурс работы.
Известен скважинный импульсный нейтронный генератор, содержащий нейтронную трубку и схему питания нейтронной трубки, состоящую из накопительного конденсатора, двух высоковольтных импульсных трансформаторов. Патент Российской Федерации №71804, МПК: G21G 4/02, 2007. Генератор имеет большую длину, малый ресурс работы.
Известен блок излучателя нейтронов, содержащий нейтронную трубку, схему питания нейтронной трубки с высоковольтным трансформатором на входе источника постоянного напряжения и температурным компенсатором, выполненным в виде малогабаритного поршня, размещенного в отдельном корпусе, герметично закрепленном на корпусе блока. Патент Российской Федерации №2399977, МПК: G21G 4/02, 2009. Прототип.
Поверх нейтронной трубки и последовательно с ней расположенным блоком питания (умножителем напряжения) размещена многослойная бумажно-пленочная изоляция элементов схемы. Применяемые электроизоляционные материалы имеют низкую теплопроводность, потому температура тепловыделяющих элементов внутри объема генератора может на (60-100)°С превышать температуру окружающей среды, что приводит к быстрому старению изоляции и сокращению срока службы нейтронного генератора. Температурный компенсатор выполнен отдельным узлом в виде поршня с уплотнительными герметизирующими кольцами размещенного в отдельном герметичном корпусе. Для обеспечения термокомпенсации в заданном диапазоне температур необходимо обеспечить ход поршня, что приводит к существенному увеличению габаритов и массы нейтронного генератора.
Техническим результатом изобретения являются повышение надежности, снижение габаритов и веса.
Технический результат достигается тем, что в блоке излучателя нейтронов, содержащем нейтронную трубку с α-детектором, схему питания нейтронной трубки с высоковольтным трансформатором на входе источника постоянного напряжения и температурным компенсатором, размещенные в герметичном корпусе залитом жидким диэлектриком, отличающийся тем, что нейтронная трубка установлена на корпусе блока питания при помощи двух опор, жестко закрепленных на плоскостях нейтронной трубки и корпусе блока питания, а высоковольтный цилиндрический электрод нейтронной трубки размещен относительно корпуса блока питания с кольцевым зазором, температурный компенсатор выполнен в виде горообразной резиновой манжеты с фланцами, причем один фланец закреплен на торце нейтронной трубки другой на корпусе блока питания.
Сущность изобретения поясняется на фигурах 1, 2, 3.
На фиг.1 схематично представлен блок излучателя нейтронов, где 1 - нейтронная трубка, 2 - блок питания, 3 - опоры, 4 - высоковольтный цилиндрический электрод нейтронной трубки, 5 - кольцевой зазор, 6 - резиновая горообразная манжета, 7 - крепежные втулки, 8 - жидкий диэлектрик, 9 - многослойная высоковольтная изоляция, 10 - умножитель напряжения, 11 - металлический корпус выполнен из алюминиевого сплава, 12 - крышка.
На фиг.2 представлена конструкция горообразной резиновой манжеты. На фиг.3 представлен вид А, где 13 - фланцы горообразной резиновой манжеты.
Блок излучателя нейтронов содержит нейтронную трубку 1, установленную на корпусе блока питания 2 при помощи двух опор 3, жестко закрепленных на плоскостях нейтронной трубки 1 и корпусе блока питания 2 при помощи крепежных винтов. Высоковольтный цилиндрический электрод 4 нейтронной трубки 1 размещен относительно корпуса 11 блока питания 2 с кольцевым зазором 5. Кольцевой зазор 5 загерметизирован горообразной резиновой манжетой 6 с фланцами 13, один фланец закреплен на торце нейтронной трубки 1 другой на корпусе 11 блока питания 2 при помощи крепежных втулок 7 и винтов, жидкий диэлектрик 8, многослойная высоковольтная изоляция 9 уложена вокруг умножителя напряжения 10 и выводов "анод" и "катод".
Умножитель напряжения 10 размещен в корпусе 11 блока питания 2 и герметично закрыт крышкой 12.
Такое размещение и закрепление нейтронной трубки 1 позволяет получить малогабаритную, жесткую конструкцию излучателя нейтронов. При этом цилиндрический высоковольтный электрод 4 нейтронной трубки 1 механически разгружен и заполнен жидким диэлектриком 8.
При работе излучателя жидкий диэлектрик 8 меняет свою температуру от элементов нейтронной трубки 1 и схемы умножения, меняет свой объем в зависимости от температуры, а резиновая манжета 6 компенсирует это изменение объема. Происходит естественная циркуляция жидкого диэлектрика 8 из корпуса блока питания 2 в высоковольтный цилиндрический электрод 4 нейтронной трубки 1, что позволяет стабилизировать тепловой режим нейтронной трубки 1 (эффект насоса).
Таким образом, резиновая манжета 6 с фланцами играет роль разгружающего элемента внутри жесткой конструкции, а также функции температурного компенсатора, что и позволяет снизить габариты, массу и трудоемкость изготовления блока излучателя нейтронов.
название | год | авторы | номер документа |
---|---|---|---|
Блок излучателя нейтронов | 2019 |
|
RU2703449C1 |
БЛОК ИЗЛУЧАТЕЛЯ НЕЙТРОНОВ | 2009 |
|
RU2399977C1 |
КАСКАДНЫЙ УМНОЖИТЕЛЬ БЛОКА ИЗЛУЧАТЕЛЯ НЕЙТРОНОВ | 2015 |
|
RU2601435C1 |
СКВАЖИННЫЙ ИМПУЛЬСНЫЙ НЕЙТРОННЫЙ ГЕНЕРАТОР | 2014 |
|
RU2550088C1 |
Импульсный нейтронный генератор | 2019 |
|
RU2703518C1 |
Импульсный нейтронный генератор | 2021 |
|
RU2776026C1 |
ИМПУЛЬСНЫЙ НЕЙТРОННЫЙ ГЕНЕРАТОР | 2007 |
|
RU2356192C1 |
БЛОК ИЗЛУЧАТЕЛЯ НЕЙТРОНОВ | 2012 |
|
RU2477027C1 |
БЛОК ИЗЛУЧАТЕЛЯ НЕЙТРОНОВ | 2013 |
|
RU2541509C1 |
СКВАЖИННЫЙ ИЗЛУЧАТЕЛЬ НЕЙТРОНОВ | 2014 |
|
RU2551485C1 |
Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для применения в аппаратуре элементного анализа вещества на основе нейтронно-радиационных методов. В заявленном блоке излучателя нейтронов нейтронная трубка установлена на корпусе блока питания при помощи двух опор, жестко закрепленных на плоскостях нейтронной трубки и корпусе блока питания, а высоковольтный цилиндрический электрод нейтронной трубки размещен относительно корпуса блока питания с кольцевым зазором, кольцевой зазор загерметизирован горообразной резиновой манжетой с фланцами, причем один фланец закреплен на торце нейтронной трубки другой на корпусе блока питания. Техническим результатом изобретения является повышение надежности, снижение габаритов и веса блока излучателя нейтронов. 3 ил.
Блок излучателя нейтронов, содержащий нейтронную трубку с α-детектором, схему питания нейтронной трубки с высоковольтным трансформатором на входе источника постоянного напряжения и температурным компенсатором, размещенные в герметичном корпусе, залитом жидким диэлектриком, отличающийся тем, что нейтронная трубка установлена на корпусе блока питания при помощи двух опор, жестко закрепленных на плоскостях нейтронной трубки и корпусе блока питания, а высоковольтный цилиндрический электрод нейтронной трубки размещен относительно корпуса блока питания с кольцевым зазором, температурный компенсатор выполнен в виде торообразной резиновой манжеты с фланцами, причем один фланец закреплен на торце нейтронной трубки, другой - на корпусе блока питания.
БЛОК ИЗЛУЧАТЕЛЯ НЕЙТРОНОВ | 2009 |
|
RU2399977C1 |
Импульсный генератор нейтронов | 1979 |
|
SU814260A1 |
US 20110176648 A1, 21.07.2011 | |||
Способ регулирования пропуска грунтовых вод через деформационный шов-водовыпуск | 2019 |
|
RU2726890C1 |
Авторы
Даты
2013-08-27—Публикация
2011-12-28—Подача