Импульсный нейтронный генератор Российский патент 2022 года по МПК H05H3/06 G21G4/02 

Описание патента на изобретение RU2776026C1

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для использования при разработке нейтронных и рентгеновских генераторов.

Известен скважинный импульсный нейтронный генератор, содержащий вакуумную нейтронную трубку со схемой питания ионного источника вакуумной нейтронной трубки и схемой формирования ускоряющего импульса состоящей из двух высоковольтных трансформаторов, конденсатора накопительного, конденсатора источника ионов нейтронной трубки и зарядного дросселя, размещенных в герметичном корпусе, в котором все элементы электрической схемы питания вакуумной нейтронной трубки выполнены в виде тел вращения с центральными отверстиями, соединены между собой механически и электрически с помощью резьбовых электрических контактов с центральными отверстиями, а с вакуумной нейтронной трубкой – через чашеобразные резьбовые втулки с центральным и боковыми отверстиями, установленные на мишени и аноде вакуумной нейтронной трубки, вакуумная нейтронная трубка и электрическая схема питания помещены в полый тонкостенный цилиндр с наружным диаметром, меньшим внутреннего диаметра герметичного корпуса, между наружной стенкой тонкостенного цилиндра и внутренней стенкой герметичного корпуса образована наружная полость, заполненная жидким диэлектриком, сообщающаяся с внутренней полостью, образованной центральными отверстиями в охлаждаемых элементах электрической схемы питания вакуумной нейтронной трубки. Патент Российской Федерации № 2368024, МПК G21G 4/02, 20.09.2009.

Недостатком этого генератора являются ограниченный ресурс работы трубки из-за отсутствия антидинатронной сетки, т.е. системы подавления вторичной электронной эмиссии, возникающей в результате бомбардировки мишени трубки ионами дейтерия. Следствием этого является быстрый выход из строя ионного источника трубки и малый срок службы трубки.

Известен импульсный нейтронный генератор на вакуумной нейтронной трубке, содержащий в металлическом корпусе, залитом жидким диэлектриком, нейтронную трубку со схемой питания ее ионного источника и формирователь импульсов ускоряющего напряжения, выполненный по биполярной схеме питания, накопительный конденсатор, сопротивление смещения. Авторское свидетельство СССР № 708939, МПК H05G 1/00, 30.04.1994.

В этом генераторе существует система подавления вторичной электронной эмиссии в виде сеточного электрода на нейтронной трубке и сопротивления смещения расположенного на торце мишенного электрода, однако в известном генераторе сопротивление смещения намотано на отдельном каркасе из изоляционного материала и является самостоятельным конструктивным элементом, для размещения которого требуется место.

Кроме того, при длительной работе генератора и выработке ресурса иногда происходит несрабатывание источника ионов нейтронной трубки. Сопротивление нейтронной трубки в таком режиме составляет сотни МОм, при этом возникает режим «холостого хода» высоковольтного трансформатора, а напряжение на его вторичной обмотке достигает величины от 200 до 220 кВ.

Для исключения электрического пробоя необходимо усиливать изоляцию, что увеличивает габаритно-массовые характеристики генератора.

Известен импульсный нейтронный генератор, содержащий размещенные в металлическом корпусе, залитом жидким диэлектриком, вакуумную нейтронную трубку со схемой питания ионного источника и схемой формирования импульса ускоряющего напряжения, включающих накопительный конденсатор, сопротивление смещения, дроссель, нагрузочное сопротивление, высоковольтный трансформатор с многорядной вторичной обмоткой, выполненной на замкнутом магнитопроводе, выход которой соединен с чашеобразным экраном и расположенной в нем вакуумной нейтронной трубкой. Патент РФ № 174178, МПК H05Н 3/06, 05.10.2017. Данное техническое решение принято в качестве прототипа.

Прототип имеет большие размеры, длину. В генераторе используется вакуумная нейтронная трубка, содержащая размещенные в герметичном запаянном стеклянном корпусе мишенный узел и управляемый 3-электродный ионный источник, который состоит из кольцевого анода, катода и поджигающего электрода.

Корпус нейтронной трубки представляет собой вакуумно-герметичную оболочку из двух стеклянных цилиндров соединенных между собой металлостеклянным спаем с помощью сеточного электрода. На одном торце оболочки закреплен мишенный узел, на другом управляемый 3-электродный искровой источник.

На сеточный электрод при помощи сопротивления смещения, намотанного на отдельном каркасе из изоляционного материала, прикладывается более отрицательный потенциал по отношению к мишени, который обеспечивает подавление вторичной электронной эмиссии.

Для исключения режима «холостого хода» высоковольтного трансформатора, (напряжение на его вторичной обмотке достигает величины от 200 до 220 кВ) при несрабатывании нейтронной трубки в прототипе использована дополнительная высоковольтная обмотка, намотанная на одном из стержней высоковольтного трансформатора, выполняющая роль нагрузочного сопротивления. Однако в известном генераторе сопротивление смещения и нагрузочное сопротивление намотаны проводом ПЭВНХ и являются самостоятельными конструктивными элементами, для размещения которых требуется дополнительный объем, увеличивающий размеры и вес нейтронного генератора.

Задачей изобретения является уменьшение размеров и веса, повышение надежности работы нейтронного генератора,.

Техническим результатом изобретения является уменьшение размеров и веса, повышение надежности работы импульсного нейтронного генератора.

Технический результат достигается тем, что в импульсном нейтронном генераторе, содержащем размещенные в металлическом корпусе, залитом жидким диэлектриком, вакуумную нейтронную трубку со схемой питания ионного источника и схемой формирования импульса ускоряющего напряжения, включающей накопительный конденсатор, сопротивление смещения, дроссель, нагрузочное сопротивление, высоковольтный трансформатор с многорядной вторичной обмоткой, выполненной на замкнутом магнитопроводе, выход которой соединен с чашеобразным экраном, и расположенной в нем вакуумной нейтронной трубкой, вакуумно-герметичный корпус нейтронной трубки выполнен в виде первого и второго полых цилиндров из керамического материала с объемным электрическим сопротивлением, величина которого определяется сопротивлением нагрузки для первого полого цилиндра, и сопротивлением смещения для второго полого цилиндра, при этом первый полый цилиндр вакуумно-герметично присоединен к анодному и сеточному электродам нейтронной трубки, а второй полый цилиндр – к сеточному и мишенному электродам, и имеют с ними электрический и тепловой контакт.

Сущность изобретения поясняется фиг. 1, где:

1 – металлический корпус генератора;

2 – нейтронная трубка;

3 – импульсный высоковольтный трансформатор;

4 – накопительный конденсатор;

5 – конденсатор источника ионов трубки;

6 – дроссель;

7 – первый полый цилиндр;

8 – второй полый цилиндр;

9 – мишенный электрод нейтронной трубки;

10 – сеточный электрод нейтронной трубки;

11 – анодный электрод нейтронной трубки;

12 – катодный электрод нейтронной трубки;

13 – поджигающий электрод нейтронной трубки;

14 – пружинный контакт;

15 – теплопроводящий изолятор;

16– электрический экран;

17 – термокомпенсатор;

18 – высоковольтный проходной изолятор.

Импульсный нейтронный генератор выполнен по схеме включения нейтронной трубки с заземленной мишенью. Генератор включает металлический корпус 1, нейтронную трубку 2, высоковольтную часть схемы её питания, обеспечивающую ускоряющее напряжение, с высоковольтным трансформатором 3 на замкнутом металлическом сердечнике, накопительный конденсатор 4, конденсатор источника ионов 5, дроссель 6. Корпус нейтронной трубки представляет собой вакуумно-герметичную оболочку, выполненную в виде двух полых цилиндров 7 и 8 одного диаметра но разной длины, соединенных между собой сеточным электродом 10. На торце первого цилиндра 7 корпуса с помощью анодного электрода 11 закреплена ионно-оптическая система ионного источника, содержащая соосно расположенные анод, катод и поджиг. На торце второго цилиндра 8 корпуса закреплена мишень с помощью мишенного электрода 9.

Соединения керамических полых цилиндров 7 и 8 с металлическими электродами выполнены металло-керамическими герметичными спаями и имеют с ними электрический и тепловой контакт. Первый полый цилиндр 7 и второй полый цилиндр 8 выполнены из специального керамического материала с объемным электрическим сопротивлением, величина которого определяется сопротивлением нагрузки и сопротивлением смещения. Специальная керамика с необходимым объемным электрическим сопротивлением может быть получена методом керамической технологии, способом горячего прессования из порошка. Требуемое сопротивление зависит от состава порошка, технологии прессования и температуры обжига. Кроме того, полые цилиндры могут быть изготовлены из керамического материала с необходимым сопротивлением другими способами, например, из полупроводниковой керамики или нанесением резистивного слоя.

По схеме с заземленным мишенным узлом сеточный электрод 10 нейтронной трубки соединен с металлическим корпусом 1 при помощи пружинного контакта 14, а мишенный электрод 9 изолирован от корпуса теплопроводящим изолятором 15.

Для обеспечения электрической прочности и улучшения теплопередачи от внутренних источников энергии во внешнюю среду герметичный металлический корпус 1 залит жидким диэлектриком ТКп, имеющим хорошие диэлектрические свойства. Для компенсации температурного изменения объёма жидкого диэлектрика установлен компенсатор 17. Для выравнивания электрических полей на анодный электрод ионного источника установлен экран 16.

Внешнее питание и импульсы запуска подают через керамические проходные изоляторы 18.

Блок излучателя работает следующим образом.

При срабатывании коммутирующего элемента (не показан) накопительный конденсатор 5, разряжается через первичные обмотки трансформатора 3. На вторичной обмотке формируется импульс напряжения отрицательной полярности 100–150 кВ длительностью 3-4 мкс, который через пружинные контакты 14 подается на сеточный электрод 10 нейтронной трубки. С задержкой 0,8 мкс формируется импульс поджига ионного источника, который формирует разряд конденсаторов 5 через анод 11 и катод 12 источника ионов. Образовавшиеся ионы дейтерия бомбардируют мишень М нейтронной трубки 2. На мишени в результате реакции 1Н2 + 1Н32Не4 + n образуются нейтроны с энергией 14 МэВ и вторичные электроны. При протекании тока через ускоряющий зазор на керамическом цилиндре 8 в результате наличия в нем электрического сопротивлении смещения (от 800 Ом до 5 кОм) возникает разность потенциалов, которая запирает вторичные электроны, образовавшиеся в процессе бомбардировки мишени нейтронной трубки М ионами дейтерия, что позволяет уменьшить паразитный ток трубки и повысить тем самым срок ее службы без необходимости изготовления сопротивления смещения, как в прототипе.

При работе генератора в штатном режиме электрическое сопротивление полого цилиндра 7 – нагрузки не оказывает влияния на формирование ускоряющего напряжения, так как вторичная обмотка имеет на порядок меньшее сопротивление. При работе генератора в то время, когда источник ионов нейтронной трубки не срабатывает, режима «холостого хода» высоковольтного трансформатора не возникает, так как вторичная обмотка оказывается автоматически подключена к нагрузочному электрическому сопротивлению полого цилиндра 7, т.е. к нагрузке величиной от 25 до 30 кОм, что приводит к стабилизации напряжения на вторичной обмотке высоковольтного трансформатора, стабилизации нейтронного выхода и увеличению срока службы генератора без необходимости изготовления сопротивления нагрузки, как в прототипе.

Таким образом, результатом изобретения является уменьшение габаритов, веса нейтронного генератора из-за отсутствия нагрузочного сопротивления и сопротивления смещения, как самостоятельных конструктивных элементов, функции которых выполняет полый цилиндр 7 и полый цилиндр 8 корпуса нейтронной трубки, выполненные из керамического материала с необходимым объемным электрическим сопротивлением. При этом образовавшийся свободный объем, который у прототипа занимали сердечник с нагрузочным сопротивлением и каркас с сопротивлением смещения, может быть использован для уменьшения габаритов и веса нейтронного генератора.

Кроме того, надежность работы предложенного генератора должна быть выше, чем у прототипа, поскольку уменьшилось число контактируемых элементов электрической схемы.

Похожие патенты RU2776026C1

название год авторы номер документа
Импульсный нейтронный генератор 2021
  • Боголюбов Евгений Петрович
  • Кузнецов Юрий Павлович
  • Пресняков Алексей Юрьевич
  • Юрков Дмитрий Игоревич
RU2773038C1
Импульсный нейтронный генератор 2019
  • Брагин Сергей Иванович
  • Павлихин Глеб Владимирович
  • Кузнецов Юрий Павлович
RU2703518C1
БЛОК ИЗЛУЧАТЕЛЯ НЕЙТРОНОВ 2013
  • Бобылев Владимир Тимофеевич
  • Боголюбов Евгений Петрович
  • Брагин Сергей Иванович
  • Пресняков Юрий Константинович
  • Кузнецов Юрий Павлович
RU2541509C1
СКВАЖИННЫЙ ИМПУЛЬСНЫЙ НЕЙТРОННЫЙ ГЕНЕРАТОР 2014
  • Боголюбов Евгений Петрович
  • Брагин Сергей Иванович
  • Кузнецов Юрий Павлович
RU2550088C1
ИМПУЛЬСНЫЙ НЕЙТРОННЫЙ ГЕНЕРАТОР 2014
  • Бобылев Владимир Тимофеевич
  • Кузнецов Юрий Павлович
RU2551840C1
Импульсный нейтронный генератор 2015
  • Бобылев Владимир Тимофеевич
  • Брагин Сергей Иванович
  • Кузнецов Юрий Павлович
RU2614240C1
БЛОК ИЗЛУЧАТЕЛЯ НЕЙТРОНОВ 2012
  • Абакумова Лариса Петровна
  • Бобылев Владимир Тимофеевич
  • Брагин Сергей Иванович
  • Кузнецов Юрий Павлович
RU2477027C1
СКВАЖИННЫЙ ИЗЛУЧАТЕЛЬ НЕЙТРОНОВ 2014
  • Боголюбов Евгений Петрович
  • Брагин Сергей Иванович
  • Зиневский Александр Игоревич
  • Кузнецов Юрий Павлович
RU2551485C1
Блок излучателя нейтронов 2019
  • Пресняков Алексей Юрьевич
  • Кузнецов Юрий Павлович
  • Брагин Сергей Иванович
  • Савчик Алексей Александрович
RU2703449C1
Импульсный нейтронный генератор 1974
  • Боголюбов Е.П.
  • Кузнецов Ю.П.
  • Курдюмов И.Г.
SU497932A1

Иллюстрации к изобретению RU 2 776 026 C1

Реферат патента 2022 года Импульсный нейтронный генератор

Изобретение относится к импульсному нейтронному генератору. Генератор содержит размещенные в металлическом корпусе, залитом жидким диэлектриком, вакуумную нейтронную трубку со схемой питания ионного источника и схемой формирования импульса ускоряющего напряжения, включающей накопительный конденсатор, сопротивление смещения, дроссель, нагрузочное сопротивление, высоковольтный трансформатор с многорядной вторичной обмоткой, выполненной на замкнутом магнитопроводе. Выход обмотки соединен с чашеобразным экраном и расположенной в нем вакуумной нейтронной трубкой, вакуумно-герметичный корпус нейтронной трубки выполнен в виде двух полых цилиндров из керамического материала с объемным электрическим сопротивлением, величина которого определяется сопротивлением нагрузки, и сопротивлением смещения. Причем один цилиндр - сопротивление нагрузки вакуумно-герметично присоединено к анодному и сеточному электродам нейтронной трубки, а другой цилиндр - сопротивление смещения - к сеточному и мишенному электродам и имеют с ними электрический и тепловой контакт. Техническим результатом является уменьшение габаритов и веса, повышение надежности работы импульсного нейтронного генератора. 1 ил.

Формула изобретения RU 2 776 026 C1

Импульсный нейтронный генератор, содержащий размещенные в металлическом корпусе, залитом жидким диэлектриком, вакуумную нейтронную трубку со схемой питания ионного источника и схемой формирования импульса ускоряющего напряжения, включающей накопительный конденсатор, сопротивление смещения, дроссель, нагрузочное сопротивление, высоковольтный трансформатор с многорядной вторичной обмоткой, выполненной на замкнутом магнитопроводе, выход которой соединен с чашеобразным экраном и расположенной в нем вакуумной нейтронной трубкой, отличающийся тем, что вакуумно-герметичный корпус нейтронной трубки выполнен в виде первого и второго полых цилиндров из керамического материала с объемным электрическим сопротивлением, величина которого определяется сопротивлением нагрузки для первого полого цилиндра, и сопротивлением смещения для второго полого цилиндра, при этом первый полый цилиндр вакуумно-герметично присоединен к анодному и сеточному электродам нейтронной трубки, а второй полый цилиндр – к сеточному и мишенному электродам, и имеют с ними электрический и тепловой контакт.

Документы, цитированные в отчете о поиске Патент 2022 года RU2776026C1

СПОСОБ КАТАЛИТИЧЕСКОЙ ОКИСЛИТЕЛЬНОЙ ОЧИСТКИ БЕНЗОЛЬНЫХ УГЛЕВОДОРОДОВ 0
  • Н. Н. Нечипоренко, И. Г. Федорченко И. М. Носалевич
  • Харьковский Политехнический Институт Имени В. И. Ленина
SU174178A1
ИМПУЛЬСНЫЙ НЕЙТРОННЫЙ ГЕНЕРАТОР 1978
  • Боголюбов Е.П.
  • Кузнецов Ю.П.
SU708939A1
СКВАЖИННЫЙ ИМПУЛЬСНЫЙ НЕЙТРОННЫЙ ГЕНЕРАТОР 2007
  • Боголюбов Евгений Петрович
  • Битулёв Алексей Алексеевич
  • Рыжков Валентин Иванович
  • Курдюмов Игорь Гаврилович
  • Кузнецов Юрий Павлович
  • Пономарёв Андрей Николаевич
RU2368024C1
US 4076990 A1, 28.02.1978
EP 3788641 A1, 10.03.2021
CN 211207994 U, 07.08.2020
CN 110752049 A, 04.02.2020
Блок излучателя нейтронов 2019
  • Пресняков Алексей Юрьевич
  • Кузнецов Юрий Павлович
  • Брагин Сергей Иванович
  • Савчик Алексей Александрович
RU2703449C1
CN 110148483 A, 20.08.2019.

RU 2 776 026 C1

Авторы

Бобылев Владимир Тимофеевич

Брагин Сергей Иванович

Кузнецов Юрий Павлович

Юрков Дмитрий Игоревич

Даты

2022-07-12Публикация

2021-11-26Подача