УСТРОЙСТВО ОСЛАБЛЕНИЯ МАГНИТНОГО ПОЛЯ ТЯГОВОГО ЭЛЕКТРИЧЕСКОГО ПРИВОДА С ПОВЫШЕННЫМИ ЭНЕРГЕТИЧЕСКИМИ ПОКАЗАТЕЛЯМИ Российский патент 2013 года по МПК B60L15/08 

Описание патента на изобретение RU2493982C2

Изобретение относится к области железнодорожного транспорта и может быть применено на транспортных средствах с тяговыми двигателями пульсирующего тока.

Задачей изобретения является реализация системы ослабления магнитного поля тяговых двигателей (ОП ТЭД) без применения индуктивных шунтов, а так же повышения энергетических показателей электровоза в режиме ОП ТЭД.

Известно устройство регулирования мощности ТЭД постоянного тока, состоящее из якорной обмотки, обмотки возбуждения, двух резисторов ослабления поля, трех контакторов (образующих три ступени ослабления поля) и индуктивного шунта, предназначенного для исключения бросков тока и облегчения условий коммутации ТЭД при включении режима ослабления поля, колебаниях напряжения в контактной сети или его восстановлении после кратковременного снятия (Б.Н. Тихменев, Л.М. Трахтман. Подвижной состав электрифицированных железных дорог. Теория работы электрооборудования. Электрические схемы и аппараты, М.; Транспорт, 1980, с.135-136). Обмотки возбуждения двигателей частично шунтируют резисторами (ослабляют магнитное поле), а последовательно с шунтирующим резистором включают индуктивный шунт. В настоящее время данное устройство применяется на всех отечественных электровозах. Индуктивные шунты обладают значительной массой и габаритами достаточно дороги вследствие наличия в их конструкции цветного металла и сложности ремонта. Недостатком данной системы ОП ТЭД является то, что при ее работе существенно искажается форма потребляемого тока, как показано на рис.1, а - напряжение питающей сети; б - потребляемый ток в штатном режиме ослабления поля.

Это приводит к снижению коэффициента мощности (КМ) электровоза (ввиду снижения коэффициента искажения синусоидальности тока - ν)

К М = cos ϕ ν ,                                         ( 1 )

где cosφ - косинус угла между основной гармоникой тока и напряжения в контактной сети;

ν - коэффициент искажения синусоидальности формы кривой тока в тяговой сети.

Известен многодвигательный электропривод, который содержит источник питания, два тяговых двигателя постоянного тока, четыре диода, девять контакторов, один дроссель, конденсаторный накопитель, резистор и два биполярных транзистора (RU 2332315, B60L 15/08, 11.12.2006). Техническим недостатком является повышенный расход электроэнергии, так как конденсаторный накопитель заряжается при пуске, требуется большое количество контакторов, которые ухудшают массогабаритные показатели и снижают надежность многодвигательного электропривода. Так же само по себе устройство не изменяет коэффициент мощности электровоза.

Наиболее близким к предлагаемому техническому решению является тяговый электропривод, который содержит источник питания, тяговый двигатель постоянного тока, два последовательно соединенных резистора, конденсатор, два тиристора, контактор, общая шина, преобразователь напряжения с гальванической развязкой (RU 76295, B60L 15/08, 20.05.2008 - прототип). Регулирование скорости осуществляется включением контактора и первого тиристора, при этом параллельно обмотке возбуждения включается первый резистор. При кратковременной потере питания первый тиристор отключается для предотвращения возникновения аварийных режимов работы тягового двигателя.

Недостатком тягового электропривода является:

- дополнительный тиристор и преобразователь усложняют схему и систему управления;

- наличие контура коммутации в цепи, что снижает надежность устройства;

- не предусмотрены защитные элементы в случае пробоя тиристора;

- при таком способе ослабления поля коэффициент мощности электровоза остается неизменным.

Целью предлагаемого изобретения является повышение коэффициента мощности электровоза в режиме ослабления магнитного поля тяговых двигателей (ОП ТЭД), за счет реализация системы ОП ТЭД без применения индуктивных шунтов.

Цель достигается тем, что в устройство ослабления поля тягового электрического привода, состоящее из якорной обмотки, обмотки возбуждения тягового двигателя (питаемого постоянным выпрямленным напряжением Ud), двух резисторов, конденсатора, двух тиристоров, контактора, общей шины и преобразователя напряжения, вместо конденсатора, двух тиристоров, резистора и преобразователя напряжения, включен микропроцессорный блок управления, получающий информацию от датчика тока, размещенного в цепи якорной обмотки тягового двигателя для измерения тока протекающего в цепи и датчика напряжения включенного в обмотку собственных нужд силового трансформатора для синхронизации силовых цепей и цепей управления, один электронный ключ (IGBT транзистор), который коллектором (к) соединен с резистором ослабления поля, эмиттером (э) соединен с минусовой шиной обмотки возбуждения, а вывод управления электронного ключа (з) соединен с микропроцессорным блоком управления. Резистор ослабления поля включен параллельно обмотке возбуждения через контактор. Микропроцессорный блок управления, выдает импульсы управления электронным ключом и по сигналу датчика тока определяет режим работы (тяга/боксование). При возникновении режима «боксование» подача импульсов на электронный ключ не осуществляется и работа схемы организуется в режиме полного магнитного поля.

Устройство поясняется чертежами: принципиальная электрическая схема устройства ослабления поля тягового электрического привода на фиг.1, временные диаграммы работы устройства на фиг.2, форма входного тока при предлагаемом способе управления системы ослабления магнитного поля при неизменном напряжении сети на фиг.3.

В соответствии с фиг.1 предлагаемое устройство состоит из якорной обмотки 1, обмотки возбуждения 3 тягового двигателя, контактора 4, резистора ослабления поля 5, электронного ключа 6 (транзистор IGBT), датчика тока 2, датчика напряжения 8, обмотки собственных нужд силового трансформатора 9, микропроцессорного блока управления 7. Обмотка возбуждения подключается параллельно резистору ослабления поля и ключу, а резистор ослабления поля и ключ включаются последовательно.

Временные диаграммы работы транзистора IGBT при предлагаемой системе ослабления возбуждения показаны на фиг.2 (а - напряжение питающей сети; б - напряжение управления электронным ключом на первой ступени ослабления поля (β1); в - напряжение управления электронным ключом на второй ступени ослабления поля (β2); г - напряжение управления электронным ключом на третьей ступени ослабления поля (β3)). Количество ступеней ослабления магнитного поля может быть несколько до N значений (фиг.2, д - напряжение управления электронным ключом на N ступени ослабления поля (βN)).

Рассмотрим на примере одного полупериода работу электронного ключа (в интервале от 0 до 10 мс). В определенный момент времени обмотка возбуждения шунтируется резистором за счет включения электронного ключа. В этот момент времени происходит уменьшение поля возбуждения и уменьшение эквивалентного сопротивления якоря, и увеличение тока двигателя. В момент времени равный несколько мс электронный ключ размыкается, поле возбуждения увеличивается, и ток якоря уменьшается. Так как электронный ключ работает в моменты больших мгновенных значений напряжения питающей сети, то за счет этого достигается приближение к синусоидальной форме значение потребляемого тока (фиг.3 (форма напряжения питающей сети (а) и форма входного тока (б) при предлагаемой системе ослабления возбуждения ТЭД)), за счет этого повышается коэффициент мощности электровоза. Электронный ключ работает в режиме широтно-импульсной модуляции, что дает возможность применения N ступеней ослабления поля.

По результатам физического моделирования полученные результаты подтверждают эффективность данного технического решения. Коэффициент мощности повышается в среднем на 6%.

Техническим результатом предлагаемого устройства является:

- повышение коэффициента мощности электровоза в режиме ОП ТЭД, что снижает расход электрической энергии;

- снижение коэффициента искажения синусоидальности тока;

- обеспечение плавности регулирования тока возбуждения согласно коэффициентам ОП ТЭД, а также в нестационарных режимах его работы;

- снижение возможных коммутационных перегрузок ТЭД, за счет быстродействия работы электронных ключей.

Похожие патенты RU2493982C2

название год авторы номер документа
УСТРОЙСТВО ОСЛАБЛЕНИЯ МАГНИТНОГО ПОЛЯ ТЯГОВОГО ЭЛЕКТРИЧЕСКОГО ПРИВОДА С ПОВЫШЕННЫМИ ЭНЕРГЕТИЧЕСКИМИ ПОКАЗАТЕЛЯМИ 2011
  • Мельниченко Олег Валерьевич
  • Портной Александр Юрьевич
  • Газизов Юрий Владимирович
  • Шрамко Сергей Геннадьевич
  • Коноваленко Даниил Викторович
  • Наковкин Олег Владимирович
RU2512022C2
УСТРОЙСТВО ОСЛАБЛЕНИЯ МАГНИТНОГО ПОЛЯ ТЯГОВОГО ЭЛЕКТРОДВИГАТЕЛЯ ЭЛЕКТРОВОЗА ПЕРЕМЕННОГО ТОКА 2018
  • Мельниченко Олег Валерьевич
  • Портной Александр Юрьевич
  • Шрамко Сергей Геннадьевич
  • Линьков Алексей Олегович
  • Яговкин Дмитрий Андреевич
  • Волчек Татьяна Витальевна
RU2700243C1
СИСТЕМА ВОЗДУШНОГО ОХЛАЖДЕНИЯ БЛОКОВ ПУСКОТОРМОЗНЫХ РЕЗИСТОРОВ 2010
  • Андросов Николай Николаевич
  • Булатов Вадим Львович
  • Дубских Николай Иванович
  • Карпов Михаил Анатольевич
  • Ковалев Юрий Николаевич
  • Мансуров Владимир Александрович
  • Манько Николай Григорьевич
  • Подосенов Станислав Германович
  • Рахимов Дамир Альмирович
  • Тарасов Роман Владиславович
RU2465152C2
СПОСОБ ОСЛАБЛЕНИЯ ПОЛЯ ТЯГОВОГО КОЛЛЕКТОРНОГО ДВИГАТЕЛЯ ЭЛЕКТРОВОЗА ПЕРЕМЕННОГО ТОКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2022
  • Портной Александр Юрьевич
  • Шрамко Сергей Геннадьевич
  • Мельниченко Олег Валерьевич
  • Линьков Алексей Олегович
  • Яговкин Дмитрий Андреевич
RU2778097C1
Электрическая передача электровоза 2017
  • Клименко Юрий Иванович
  • Кузнецов Николай Александрович
  • Перфильев Константин Степанович
  • Чупин Яков Владимирович
  • Бенькович Никита Игоревич
RU2674998C1
СПОСОБ ВЫРАВНИВАНИЯ НАГРУЗКИ ТЯГОВЫХ ДВИГАТЕЛЕЙ ЭЛЕКТРОВОЗА ПЕРЕМЕННОГО ТОКА 2018
  • Мельниченко Олег Валерьевич
  • Портной Александр Юрьевич
  • Шрамко Сергей Геннадьевич
  • Линьков Алексей Олегович
  • Яговкин Дмитрий Андреевич
  • Баринов Игорь Александрович
RU2724981C2
Тяговый электропривод локомотива 2018
  • Клименко Юрий Иванович
  • Кузнецов Николай Александрович
  • Перфильев Константин Степанович
  • Чупин Яков Владимирович
  • Евсеев Вячеслав Юрьевич
RU2677971C1
Тяговый электропривод локомотива 2019
  • Клименко Юрий Иванович
  • Кузнецов Николай Александрович
  • Перфильев Константин Степанович
  • Чупин Яков Владимирович
  • Евсеев Вячеслав Юрьевич
RU2722734C1
СПОСОБ ВОЗДУШНОГО ОХЛАЖДЕНИЯ БЛОКОВ ПУСКО-ТОРМОЗНЫХ РЕЗИСТОРОВ 2010
  • Андросов Николай Николаевич
  • Булатов Вадим Львович
  • Дубских Николай Иванович
  • Карпов Михаил Анатольевич
  • Ковалев Юрий Николаевич
  • Мансуров Владимир Александрович
  • Манько Николай Григорьевич
  • Подосенов Станислав Германович
RU2462603C2
УСТРОЙСТВО НЕПРЕРЫВНОГО ТЕМПЕРАТУРНОГО КОНТРОЛЯ И АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ НАГРУЗКИ СИЛОВОГО ЭЛЕКТРООБОРУДОВАНИЯ ЭЛЕКТРОВОЗА 2011
  • Коноваленко Даниил Викторович
  • Мельниченко Олег Валерьевич
  • Лукьянов Эдуард Владимирович
RU2478046C1

Иллюстрации к изобретению RU 2 493 982 C2

Реферат патента 2013 года УСТРОЙСТВО ОСЛАБЛЕНИЯ МАГНИТНОГО ПОЛЯ ТЯГОВОГО ЭЛЕКТРИЧЕСКОГО ПРИВОДА С ПОВЫШЕННЫМИ ЭНЕРГЕТИЧЕСКИМИ ПОКАЗАТЕЛЯМИ

Изобретение относится к области железнодорожного транспорта и может быть применено на транспортных средствах с тяговым электрическим приводом. Устройство ослабления магнитного поля тягового электрического привода состоит из якорной обмотки, обмотки возбуждения тягового двигателя, резистора ослабления поля и контактора. В схему регулирования ослабления поля включен микропроцессорный блок управления, датчик тока, размещенный в цепи якорной обмотки тягового двигателя, датчик напряжения, включенный в обмотку собственных нужд силового трансформатора, один электронный ключ (IGBT транзистор), который коллектором (к) соединен с резистором ослабления поля, включенным параллельно обмотке возбуждения через контактор, эмитером (э) соединен с минусовой шиной обмотки возбуждения, а выводом управления электронного ключа (з) соединен с микропроцессорным блоком управления, получающим информацию от датчика тока и датчика напряжения. Технический результат заключается в повышении коэффициента мощности электровоза, снижении коэффициента искажения синусоидальности тока и снижении расхода электрической энергии. 3 ил.

Формула изобретения RU 2 493 982 C2

Устройство ослабления магнитного поля тягового электрического привода, состоящее из якорной обмотки, обмотки возбуждения тягового двигателя, резистора ослабления поля и контактора, отличающееся тем, что в схему регулирования ослабления поля включен микропроцессорный блок управления, датчик тока, размещенный в цепи якорной обмотки тягового двигателя, датчик напряжения, включенный в обмотку собственных нужд силового трансформатора, один электронный ключ (IGBT транзистор), который коллектором (к) соединен с резистором ослабления поля, включенного параллельно обмотке возбуждения через контактор, эмиттером (э) соединен с минусовой шиной обмотки возбуждения, а выводом управления электронного ключа (з) соединен с микропроцессорным блоком управления, получающего информацию от датчика тока и датчика напряжения, при этом электронный ключ работает в режиме широтно-импульсной модуляции, что реализует N ступеней ослабления магнитного поля.

Документы, цитированные в отчете о поиске Патент 2013 года RU2493982C2

Устройство для регулирования тока возбуждения тяговых электродвигателей 1975
  • Кощеев Леонид Григорьевич
SU564983A1
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ВОЗБУЖДЕНИЯ ТЯГОВОГО ЭЛЕКТРОДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА 2005
  • Мазнев Александр Сергеевич
  • Евстафьев Андрей Михайлович
RU2283248C1
ЭЛЕКТРОПРИВОД ПОСТОЯННОГО ТОКА 2000
  • Суслов Б.Е.
  • Трофименко В.И.
  • Хоцанов Д.И.
RU2168259C1
Двигатель внутреннего сгорания со сгоранием при постоянном давлении 1984
  • Богданов Владимир Павлович
  • Богданов Ярослав Владимирович
SU1257257A1
DE 3817936 A1, 30.11.1989.

RU 2 493 982 C2

Авторы

Мельниченко Олег Валерьевич

Портной Александр Юрьевич

Газизов Юрий Владимирович

Шрамко Сергей Геннадьевич

Коноваленко Даниил Викторович

Наковкин Олег Владимирович

Даты

2013-09-27Публикация

2011-12-08Подача