Изобретение относится к электроэнергетике и может быть использовано для контроля провиса провода высоковольтных воздушных линий электропередачи и для измерения температуры проводов линии.
Известны бесконтактные датчики гололеда [авт.св. СССР 1035708, МКИ Н02G 07/16, 1983]. Устройство содержит индукционный датчик магнитного поля (создаваемого током, текущим по проводам), располагаемый под проводами линии, и передающее устройство. Недостатком данного устройства является необходимость в высокой чувствительности элементов, регистрирующих магнитное поле, и зависимость от таких параметров, как величина тока в проводах, высота пролета, температура провода.
Наиболее близким к изобретению, принятым за прототип, является сигнализатор массы гололедных отложений и окончания плавки гололеда (Патент РФ №RU 2220485, МПК Н02G 7/16, 03.06.2002). Отличием способа является то, что сигнализатор содержит передающее устройство, чувствительный элемент с жестко закрепленной в точке монтажа провода к гирлянде изоляторов осью вращения друг относительно друга двух его частей, каждая из которых снабжена штангой, жестко прикрепленной концом к проводу узлами крепления, датчик температуры провода, источник питания, соединительные провода, при помощи которых чувствительный элемент, датчик температуры и передающее устройство подключены к источнику питания. Сигнализатор работает следующим образом. При отсутствии гололедных отложений угол ос между штангами является исходным. При появлении гололедных отложений на проводах угол α уменьшается (за счет увеличения провиса провода). По изменению угла α и по измеренному значению температуры провода расчетным путем определяют массу гололедных отложений на проводах.
Недостатком данного сигнализатора является то, что изменение угла α между штангами при изменении длины провода весьма мало, что требует большой точности измерения угла, и это приводит к малой надежности работы данного сигнализатора. Например: при длине пролета 230 м на воздушной ЛЭП 110 кВ, и при изменении провиса провода на 1 м (расчетная величина для провода АС-120 и гололеда толщиной 1,5 см), изменение угла α между штангами будет равно: Δα~arctg(1/115)~0,5 градуса.
Задачей изобретения является повышение точности определения провиса провода за счет того, что в предлагаемом способе непосредственно измеряется сама величина провиса провода (расстояние по вертикали от низшей точки провода до точки подвеса провода).
Технический результат достигается тем, что в способе контроля провиса провода линии электропередачи, включающем размещение на проводе подвесного датчика температуры, а под проводом - контрольного устройства, при этом посредством подвесного датчика измеряют и передают в контрольное устройство измеренные значения температуры провода, а посредством контрольного устройства осуществляют передачу измеренных данных, согласно заявляемому изобретению, посредством контрольного устройства совместно с подвесным датчиком температуры, осуществляют, при помощи первого и второго ультразвуковых приемопередатчиков, расположенных в контрольном устройстве и разнесенных по горизонтали поперек линии электропередачи, измерение провиса и отклонения провода по горизонтали поперек линии электропередачи, для чего при помощи подвесного датчика температуры, выполненного с возможностью излучения ультразвукового импульса, по команде контрольного устройства осуществляют излучение ультразвукового импульса, принимают ультразвуковой импульс на первый и второй ультразвуковые приемопередатчики, и по временам распространения ультразвукового импульса от подвесного датчика температуры до первого и второго ультразвуковых приемопередатчиков вычисляют положение провода в плоскости, поперечной линии электропередачи, при этом для определения скорости звука в воздухе измеряют время прохождения ультразвуковых импульсов от одного ультразвукового приемопередатчика к другому.
Необходимость измерения провиса провода обусловлена тем, что провис провода является чувствительным параметром, который зависит от температуры провода, ветровой и гололедной нагрузок на провода ЛЭП.
При высокой температуре окружающей среды (летом), и при высокой токовой нагрузке на линию электропередачи, провода сильно нагреваются и, за счет температурного расширения металла проводов растягиваются, что приводит к большому провису проводов. Большой провис проводов уменьшает расстояние от провода до земли, что может приводить к пробою изоляционного промежутка (например: на проезжающий под линией электропередачи транспорт).
В зимнее время, гололедные отложения на линиях электропередачи приводят к дополнительной весовой нагрузке на провода линии, что растягивает провода линии и увеличивает провис провода, что может привести к обрыву проводов. Соответственно по измеренным значениям провиса провода и температуры провода - можно оценить величину гололедной нагрузки на провода линии, толщину гололедных отложений. Кроме этого, большой провис провода уменьшает расстояние провода до земли, что увеличивает угрозу пробоя изоляционного промежутка провод - земля.
При наличии сильного ветра, дующего поперек линии электропередачи, на провода действует дополнительная растягивающая сила (ветровая нагрузка), что растягивает провода линии и увеличивает провис провода, и это может создавать угрозу разрыва провода.
Рассмотрим провис провода при различных условиях (Крюков К.П., Новгородцев Б.П. «Конструкции и механический расчет линий электропередачи»).
Из таблицы 1 видно, что величина провиса провода изменяется в широких пределах: от 5 до 7,2 метра. Это связано с двумя причинами.
Во-первых, для линий электропередачи высокого напряжения длина пролета (расстояние между ближайшими опорами) довольно велика (сотни метров). При большой длине пролета, температурные изменения длины провода приводят к большому изменению провиса провода.
Во-вторых, сталеалюминевые провода, применяемые на данных ЛЭП, имеют величину модуля упругости порядка 8000 кгс/мм2, что значительно меньше модуля упругости для стали, которая составляет величину 20000 кгс/мм. В результате, сталеалюминевые провода достаточно сильно растягиваются при появлении дополнительной весовой нагрузки на провод (при ветре и при гололеде).
Сущность изобретения поясняется чертежами, где на фиг 1 изображена линия электропередачи с располагаемым контрольным устройством и подвесным датчиком температуры на контролируемом проводе, а на фиг.2 показан вид А на фиг.1 (вид вдоль линии электропередачи, боковой ветер справа налево).
Цифрами на чертежах обозначены:
1 - провод линии электропередачи,
2 - опора линии электропередачи,
3 - провис провода линии электропередачи, (расстояние L1 от самой нижней точки провода до линии, соединяющей точки подвеса провода),
4 - подвесной датчик температуры,
5 - контрольное устройство,
6 - расстояние L2 от контрольного устройства до подвесного датчика,
7 - первый ультразвуковой приемопередатчик,
8 - второй ультразвуковой приемопередатчик,
9 - расстояние от подвесного датчика до первого ультразвукового приемопередатчика,
10 - расстояние от подвесного датчика до второго ультразвукового приемопередатчика,
11 - истинное значение провиса провода линии электропередачи,
12 - отклонение провода по горизонтали поперек линии электропередачи.
Способ контроля провиса провода линии электропередачи включает размещение на проводе 1 подвесного датчика 4 температуры, а под проводом 1 - контрольного устройства 5. Посредством подвесного датчика 4 измеряют и передают в контрольное устройство 5 измеренные значения температуры провода 1, а посредством контрольного устройства 5 осуществляют передачу измеренных данных.
Отличием предлагаемого способа контроля провиса провода линии электропередачи является то, что посредством контрольного устройства 5 совместно с подвесным датчиком 4 температуры, осуществляют, при помощи первого 7 и второго 8 ультразвуковых приемопередатчиков, расположенных в контрольном устройстве 5 и разнесенных по горизонтали поперек линии электропередачи, измерение провиса и отклонения провода 1 по горизонтали поперек линии электропередачи.
Для измерения провиса и отклонения провода 1 по горизонтали поперек линии электропередачи при помощи подвесного датчика 4 температуры, выполненного с возможностью излучения ультразвукового импульса, по команде контрольного устройства 5 осуществляют излучение ультразвукового импульса, а затем принимают ультразвуковой импульс на первый 7 и второй 8 ультразвуковые приемопередатчики.
По временам распространения ультразвукового импульса от подвесного датчика 4 температуры до первого 7 и второго 8 ультразвуковых приемопередатчиков вычисляют положение провода 1 в плоскости, поперечной линии электропередачи.
Для определения скорости С звука в воздухе измеряют время прохождения ультразвуковых импульсов от одного ультразвукового приемопередатчика к другому, например, от первого 7 к второму 8.
Пример конкретного осуществления способа контроля провиса провода линии электропередачи.
Провод 1 (фиг.1) линии электропередачи подвешен на опорах 2 с провисом 3 (расстояние L1 от самой нижней точки провода до линии, соединяющей точки подвеса провода). Для измерения температуры и провиса провода, в нижней точке провода 1 закреплен подвесной датчик 4, который измеряет температуру провода 1 и передает измеренное значение температуры в контрольное устройство 5.
Подвесной датчик 4 температуры и контрольное устройство 5 совместно измеряют расстояние 6 (расстояние L2) от контрольного устройства 5 до подвесного датчика 4.
Для измерения расстояния 6, по команде контрольного устройства 5, подвесной датчик 4 излучает ультразвуковой импульс. По времени t1, между командой контрольного устройства 5 и временем t2 приема ультразвукового импульса контрольным устройством 5, вычисляется расстояние 6 (расстояние L2): L2=C*(t2-t1), где С - скорость звука в воздухе.
Измерив расстояние 6 (расстояние L2), контрольное устройство 5 рассчитывает провис 3 (расстояние L1) провода 1 L1=(L-L2), где L - расстояние по вертикали от контрольного устройства 5 до точки подвеса 2 провода 1. Контрольное устройство 5 передает измеренные величины провиса 3 (расстояние L1) и температуру провода 1 в единый центр мониторинга.
Предлагаемый способ решает следующие две проблемы измерения провиса провода.
Во-первых, при наличии бокового (поперек линии электропередачи) ветра, провода отклоняются от вертикали.
Во-вторых, скорость С звука в воздухе зависит от многих параметров (например: температуры, влажности, давления воздуха).
Для решения этих проблем контрольное устройство 5 снабжено первым 7 и вторым 8 ультразвуковыми приемопередатчиками, разнесенными по горизонтали поперек линии электропередачи (фиг.2, вид вдоль линии электропередачи, боковой ветер с права налево). По времени распространения ультразвукового импульса от подвесного датчика 4 до каждого приемопередатчика 7 и 8 вычисляются расстояния 9 и 10 от подвесного датчика 4 до каждого приемопередатчика 7 и 8. По измеренным расстояниям 9 и 10, и по известному расстоянию L3 между приемопередатчиками 7 и 8, вычисляются истинное значение 11 провиса провода и отклонения 12 провода по горизонтали поперек линии электропередачи (решение треугольника по трем сторонам - по измеренным расстояниям 9 и 10, и по известному расстоянию L3).
Для определения скорости С звука передают ультразвуковой импульс от первого 7 ультразвукового приемопередатчика к второму 8 ультразвуковым приемопередатчикам, и по времени t3 прохождения ультразвуковых импульсов между ультразвуковыми приемопередатчиками 7 и 8 вычисляют скорость С звука в данный момент: C=L3/t3. В результате, при расчете истинного значения 11 провиса провода и отклонения 12 провода по горизонтали поперек линии электропередачи используется измеренное значение скорости звука С.
Таким образом, предлагаемый способ контроля провиса проводов линии электропередачи позволяет непрерывно контролировать условия работы линии электропередачи:
- своевременно обнаруживать угрожающий провис провода при высоких температурах воздуха и большой токовой нагрузке на линии,
- контролировать ветровую нагрузку на провода линии электропередачи,
- своевременно обнаруживать появление гололедной нагрузки на провода линии электропередачи,
- контролировать процесс плавки гололеда (температуру провода и уменьшение гололедной нагрузки).
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА КОНТРОЛЯ ГОЛОЛЁДНЫХ НАГРУЗОК НА ПРОВОДА ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ | 2017 |
|
RU2658344C1 |
Способ мониторинга технического состояния воздушных линий электропередачи по углу вращения провода либо грозотроса | 2019 |
|
RU2738411C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ГОЛОЛЕДА НА ПРОВОДАХ ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ | 2011 |
|
RU2461942C1 |
МОДУЛЬ ПЕРИОДИЧЕСКОГО ОПРЕДЕЛЕНИЯ НАЛЕДИ НА ДЛИННОМЕРНЫХ ЭЛЕМЕНТАХ КОНСТРУКЦИЙ, В ЧАСТНОСТИ ПРОВОДАХ ВОЗДУШНЫХ ЛЭП | 2021 |
|
RU2767246C1 |
СПОСОБ ОБНАРУЖЕНИЯ ГОЛОЛЕДНО-ИЗМОРОЗЕВЫХ ОТЛОЖЕНИЙ НА ПРОВОДАХ И ГРОЗОЗАЩИТНЫХ ТРОСАХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ | 2016 |
|
RU2645755C1 |
СПОСОБ ОБНАРУЖЕНИЯ ПОЯВЛЕНИЯ ГОЛОЛЕДА НА ПРОВОДАХ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ | 2011 |
|
RU2456728C1 |
СИСТЕМА ПЕРЕДАЧИ СИГНАЛОВ ПО ЛИНИИ ЭЛЕКТРОСНАБЖЕНИЯ ДЛЯ ОБНАРУЖЕНИЯ ГОЛОЛЕДНЫХ ОТЛОЖЕНИЙ НА ПРОВОДАХ | 1997 |
|
RU2129334C1 |
УСТРОЙСТВО ДИСТАНЦИОННОГО КОНТРОЛЯ СОСТОЯНИЯ ПРОВОДА, ГРОЗОЗАЩИТНОГО ТРОСА ИЛИ КАБЕЛЯ ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ | 2013 |
|
RU2521778C1 |
СПОСОБ ОБНАРУЖЕНИЯ ГОЛОЛЕДНЫХ ОБРАЗОВАНИЙ НА ПРОВОДАХ И ГРОЗОЗАЩИТНЫХ ТРОСАХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ | 2010 |
|
RU2409882C1 |
СПОСОБ ОБНАРУЖЕНИЯ ГОЛОЛЕДНЫХ ОБРАЗОВАНИЙ НА ПРОВОДАХ И ГРОЗОЗАЩИТНЫХ ТРОСАХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ | 2011 |
|
RU2479084C1 |
Изобретение относится к электротехнике. Способ включает размещение на проводе подвесного датчика температуры, а под проводом - контрольного устройства. При помощи первого и второго ультразвуковых приемопередатчиков осуществляют посредством контрольного устройства совместно с подвесным датчиком температуры измерение провиса и отклонение провода по горизонтали поперек линии электропередачи. Осуществляют излучение ультразвукового импульса, принимают ультразвуковой импульс на ультразвуковые приемопередатчики и по времени распространения ультразвукового импульса от подвесного датчика температуры до первого и второго ультразвуковых приемопередатчиков вычисляют положение провода в плоскости. Техническим результатом является повышение точности определения провиса. 2 ил., 1 табл.
Способ контроля провиса провода линии электропередачи, включающий размещение на проводе подвесного датчика температуры, а под проводом - контрольного устройства, при этом посредством подвесного датчика передают в контрольное устройство измеренные значения температуры провода, а посредством контрольного устройства осуществляют передачу измеренных данных, отличающийся тем, что посредством контрольного устройства совместно с подвесным датчиком температуры осуществляют при помощи первого и второго ультразвуковых приемопередатчиков, расположенных в контрольном устройстве и разнесенных по горизонтали поперек линии электропередачи, измерение провиса и отклонение провода по горизонтали поперек линии электропередачи, для чего при помощи подвесного датчика температуры, выполненного с возможностью излучения ультразвукового импульса, по команде контрольного устройства осуществляют излучение ультразвукового импульса, принимают ультразвуковой импульс на первый и второй ультразвуковые приемопередатчики и по временам распространения ультразвукового импульса от подвесного датчика температуры до первого и второго ультразвуковых приемопередатчиков вычисляют положение провода в плоскости, поперечной линии электропередачи, при этом для определения скорости звука в воздухе измеряют время прохождения ультразвуковых импульсов от одного ультразвукового приемопередатчика к другому.
СИГНАЛИЗАТОР МАССЫ ГОЛОЛЕДНЫХ ОТЛОЖЕНИЙ И ОКОНЧАНИЯ ПЛАВКИ ГОЛОЛЕДА | 2002 |
|
RU2220485C1 |
Способ контроля окончания плавки гололеда и устройство для его осуществления | 1982 |
|
SU1035708A1 |
СПОСОБ КОНТРОЛЯ ТЕМПЕРАТУРЫ ПРОВОДА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2165122C2 |
СПОСОБ ОБНАРУЖЕНИЯ ПОЯВЛЕНИЯ ГОЛОЛЕДА НА ПРОВОДАХ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ | 2005 |
|
RU2287883C1 |
СПОСОБ ОБНАРУЖЕНИЯ ПОЯВЛЕНИЯ ГОЛОЛЕДА НА ПРОВОДАХ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ | 2009 |
|
RU2399133C1 |
US 4210902 A1, 01.07.1980 | |||
УСТРОЙСТВО ДЛЯ УДАЛЕНИЯ ЛЕТУЧИХ КОМПОНЕНТОВ И СПОСОБ ЕГО ПРИМЕНЕНИЯ | 2014 |
|
RU2672443C2 |
CN 101295863 A, 29.10.2008. |
Авторы
Даты
2013-09-27—Публикация
2012-04-27—Подача