ТУРБИНА ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ Российский патент 2013 года по МПК F01D11/24 

Описание патента на изобретение RU2496991C1

Изобретений относится к двигателестроению, в том числе к авиационным и стационарным газотурбинным двигателям ГТД, имеющим два контура, и может найти применение в авиастроении, судостроении, на газоперекачивающих станциях и для пиковых энергетических установок в качестве привода для электрогенератора, предназначенного для выработки электроэнергии.

Известна турбина газотурбинного двигателя по патенту на изобретение №2435039 МПК F01D 11/24 убл 27.04.08 г. Корпус турбины включает радиальную стенку и содержит со стороны своей внутренней поверхности опору для крепления кольца, окружающего подвижные лопатки турбины. Опора содержит периферийную стенку, окружающую кольцо соосно с ним. Корпус включает в себя множество перфораций, обеспечивающих подачу воздуха для равномерной вентиляции наружной поверхности периферийной стенки. Перфорации образованы через радиальную стенку корпуса, проходящую радиально внутрь. Стенка по существу охватывает вентиляционную камеру, которая также образована внутренней поверхностью корпуса и наружной поверхностью периферийной стенки опоры. Вентиляционная камера включает в себя небольшое отверстие между радиальным ребром опоры и внутренней поверхностью радиальной стенки для выпуска воздуха из камеры.

Недостатки - конструктивная сложность и невозможность регулирования радиального зазора на всех режимах работы двигателя.

Известен газотурбинный двигатель по патенту РФ на изобретение №2304221 МПК F01D 11/14, опубл. 10.08.07 г. Этот ГТД содержит компрессор, имеющий несколько осевых ступеней, содержащих корпус, направляющие аппараты и рабочие кола, и турбину, содержащую корпус и, как минимум одну ступень с сопловым аппаратом и рабочим колесом, а также средство регулирования радиальных зазоров, по меньшей мере одной ступени компрессора и/или турбины.

Недостатки - низкая эффективность регулирования радиального зазора, особенно на переходных режимах, при форсировании или дроссилировании двигателя, конструктивная сложность устройства регулирования радиального зазора.

Газовая турбина, например, турбина высокого давления для турбомашины, такая, как раскрытая в публикации патент Франции №2688539, обычно содержит множество неподвижных лопаток, расположенных так, что они чередуются с множеством подвижных лопаток, находящихся на пути горячего газа, поступающего из камеры сгорания турбомашины. Движущиеся лопатки турбины окружены по всей их периферии стационарным кольцевым узлом. Стационарный кольцевой узел образует проход, вдоль которого горячий газ течет через лопатки турбины.

Чтобы повысить эффективность такой турбины, как известно, уменьшают зазор, который существует между вершинами движущихся лопаток турбины и обращенными к ним частями стационарного кольцевого узла, до величины, которая будет по возможности наименьшей.

Для этого разработаны средства, которые обеспечивают возможность изменения диаметра стационарного кольцевого узла.

Тем не менее это решение считается недостаточным, если опора, к которой крепят кольцо, также подвержена по ее периферии неравномерной термической деформации, когда такая деформация приводит к деформации кольца турбины.

Известна также турбина ГТД с регулируемыми радиальными зазорами по патенту РФ №2435039, МПК F01D 111/04, прототип способа и устройства.

Этот способ регулирования радиального зазора в турбине включает охлаждение и/или нагрев ротора и/или статора.

Эта турбина содержит внешний, внутренний и промежуточный корпуса, ступень с сопловым аппаратом и рабочим колесом с кольцевой вставкой над рабочим колесом, а также средство регулирования радиальных зазоров, по меньшей мере, одной ступени турбины, при этом кольцевая вставка над рабочими колесами закреплена на промежуточном и внешнем корпусах,

Недостатки способа и устройства - резкое увеличение радиального зазора при форсировании двигателя из-за быстрого прогрева корпуса.

Техническим результатом, достигнутым при создании изобретения является поддержание радиальных зазоров постоянными на всех режимах работы турбины..

Группа изобретений относится к газотурбинным двигателям.

Задачи создания изобретения: эффективное регулирование радиальных зазоров в турбине на всех режимах, повышение тяги двигателя на взлетном и форсажном режиме, повышение КПД и надежности турбины.

Решение указанных задач достигнуто в турбине двухконтурного газотурбинного двигателя, содержащая, по меньшей мере, одну охлаждаемую ступень с сопловым аппаратом с полостями над ним и под ним, и по меньшей мере один ротор турбины с охлаждаемым рабочим колесом и аппаратом закрутки перед ним, а также статор турбины, содержащий, корпус турбины, кольцевую вставку над рабочим колесом турбины и систему регулирования радиального зазора, тем, что согласно изобретению корпус турбины выполнен из двух частей: передней и задней, кольцевая вставка установлена между ними, статор выполнен охлаждаемым воздухом второго контура, при этом система подачи охлаждающего статор воздуха выполнена в виде установленных во втором контуре воздухозаборника, регулятора расхода с приводом кожуха в полости которого установлен перфорированный кожух, а также содержит бортовой компьютер и датчики измерения радиального зазора, привод регулятора расхода, и датчики измерения радиального зазора соединены электрическими связями с бортовым компьютером. Кольцевая вставка может быть выполнена пустотелой. Внутренняя полость кольцевой вставки может быть заполнена теплоаккумулирующим веществом. На кольцевой вставке и/или корпусе турбины могут быть выполнены ребра. В корпусе турбины перед кольцевой вставкой могут быть выполнены радиальные отверстия, а в кольцевой вставке - сквозные осевые втулки

Сущность изобретения представлена на чертежах (фиг.1-15), где:

- на фиг.1 приведена схема ГТД,

- на фиг.2 представлена схема турбины и системы регулирования радиального зазора в турбине на примере одной ступени двухступенчатой турбины,

- на фиг.3 представлена вторая схема турбины и системы регулирования радиального зазора в турбине на примере одной ступени двухступенчатой турбины,

- на фиг.4 приведен вид вставки,

- на фиг.5 приведен вид А,

- на фиг.6 приведена вставка с теплоаккумулирующим наполнителем,

- на фиг.7 приведен вид кольцевой вставки с отверстиями в ней,

- на фиг.8 приведена кольцевая вставка с ребрами,

- на фиг.9 приведена кольцевая вставка с турбулизаторами,

- на фиг.10 приведена кольцевая вставка с покрытием из мягкого истираемого материала,

- на фиг.11 приведена кольцевая вставка с панелями из «сотовых уплотнений»,

- на фиг.12 приведен внешний вид воздухозаборника,

- на фиг.13 приведен вид В,

- на фиг.14 приведена диаграмма изменения расхода воздуха для охлаждения ротора турбины в зависимости от температуры перед турбиной,

- на фиг.15 приведена диаграмма изменения расхода воздуха для охлаждения статора турбины в зависимости от времени работы ГТД.

Конструкция двухконтурного газотурбинного двигателя представленная на чертежах фиг.1-15. Двухконтурный газотурбинный двигатель (ГТД) содержит входное устройство 1, с входным обтекателем 2, вентилятор 3, основной корпус 4, сопло 5, компрессор 6, камеру сгорания 7 с корпусом 8, жаровой трубой 9 и форсунками 10, турбину И, валы 12 и 13, опоры 14…17 (фиг.1). Валов в турбине 11 может быть не только два, но и один или три.

Компрессор 6 содержит корпус 18, по меньшей мере, одну ступень 19, которая в свою очередь, содержит направляющий аппарат 20 и рабочие лопатки 21 и диски 22.

Турбина 11 содержит, по меньшей мере, один ротор 23 и статор 24. Турбина 11 имеет, по меньшей мере, одну ступень 25. На фиг.1 приведена турбина 11 с двумя ступенями 25, каждая из которых, в свою очередь, содержит сопловой аппарат 26, рабочее колесо 27 с рабочими лопатками 28 и диск 29. Ступеней 25 турбины 11 может быть и одна или более двух. Сопловой аппарат 26 и рабочие лопатки 28 выполнены охлаждаемыми, например, перфорированными. Диск 29 имеет с обеих сторон передний и задний дефлекторы 30 и 31. Ступеней 25 турбины 11, как упоминалось ранее, может одна, три или сколько угодно, а средство регулирования радиального зазора применено на одной или нескольких или всех ступенях 25 турбины 11. Наиболее эффективно применение средства регулирования радиального зазора на первых ступенях турбины 11 из-за высокого перепада давления на них.

Двухконтурный газотурбинный двигатель имеет два контура: первый 32 и второй 33 (фиг.1). Воздух второго контура 33 имеет более низкую температуру, чем воздух в компрессоре 6 из-за того, что при сжатии воздуха его температура возрастает Вследствие этого использовать воздух второго контура 33 для управления радиальными зазорами в турбине 11 предпочтительнее.

Турбина 11 содержит средство регулирования радиального зазора. Средство регулирования радиального зазора содержит кольцевую вставку 34, установленную внутри статора 24 над рабочими лопатками 28 турбины 11 с образованием радиального зазора δ. Кольцевая вставка 34 может быть выполнена сплошной (фиг.5) или пустотелой (фиг.6), т.е. содержать полость 35. Полость 35 может быть заполнена теплоаккумулирующим веществом 36. Теплоаккумулирующее вещество 36, это материал имеющий высокую теплоемкость и теплоту фазового перехода, например, на основе ацетата натрия.

Далее изобретение описано на примере одной первой ступени 25 турбины высокого давления (первой), но может быть применено и на других (всех) ступенях 25 турбины 11.

Рабочие лопатки 28 могут быть выполнены с бандажными полками (такой вариант на фиг.1…16 не показан). Рабочие лопатки 28 содержат замковую часть 37. В диске 29 выполнены отверстия 38 для подвода к рабочим лопаткам 28 охлаждающего воздуха. Передний дефлектор 30 уплотнен относительно вала 8 и статорных деталей уплотнениями 39 и 40. В переднем дефлекторе 30 выполнены отверстия 41 для подвода охлаждающего воздуха.

Система охлаждения ротора 23 турбины 11 содержит аппарат закрутки 42, внутренний трубопровод подачи охлаждающего воздуха 43, внутреннюю полость 44, отверстии 45, внутреннюю полость 46 соплового аппарата 26, отверстия 47, верхнюю полость 48 втулки 49, трубопровод высокого давления 50, регулятор расхода 51. Другой конец трубопровода высокого давления 50 соединен с выходом из компрессора 6.

Кроме того, средство регулирования радиального зазора имеет установленные во втором контуре 33 над статором 24 турбины 11 воздухозаборники 52.. Каждый воздухозаборник 52 имеет патрубок забора воздуха 53 и регулятор расхода 54. Воздухозаборники 52 установлены во втором контуре 33 и предназначены для дозированного забора охлаждающего воздуха из второго контура 33. Всего может быть применено от 2-х до 12 воздухозаборников 52. Более детально конструкция воздухозаборников 52 приведена на фиг.4, 14 и 15.

Воздухозаборник 52 кроме патрубка забора воздуха 53 и регулятора расхода 54 с приводом 55 содержит корпус 56, выполненный концентрично статору 24 турбины 11 и образующим полость 57 внутри которой установлен перфорированный кожух 58 для подачи воздуха в виде «душа» на статор 24 турбины 11 и кольцевую вставку 34.. Для интенсификации охлаждения на статоре 24 могут быть выполнены продольные ребра 59.

Статор 24 содержит корпус 60 с фланцем 61, кольцевую вставку 34 и внутреннюю оболочку 62. Корпус 60 состоит из двух частей передней 63 и задней 64 между которыми уставлена кольцевая вставка 34. Корпус 8 камеры сгорания 7 имеет фланец 65. соединенный с фланцем 61. Между фланцами 61 и 65 закреплена коническая проставка 666 с фланцем 67.

Второй вариант исполнения схемы охлаждении статора 24 турбины 11 приведен на фиг 8 и 9. Для реализации этого способа в передней части 63 корпуса 60 выполнены отверстия 68 соединяющие полость 57 с полость 69 между передней частью 63 корпуса 60 и кольцевой вставкой 34.

Задняя часть 64 корпуса 60 имеет радиальную перегородку 70 с отверстиями 71, которая содержит кольцевую деталь 72, которая сварочным швом 73 соединена с радиальной перегородкой 70. В кольцевая детали 72 выполнен кольцевой паз 74 для размещения в нем кольцевого выступа 75, имеющегося на кольцевой вставке 34 для ее центрирования. С другой стороны кольцевой вставки 34 выполнен кольцевой выступ 76 установленный в полости 77..

Теплоаккумулирующий материал 36, это как отмечалось выше, материал, который имеет высокую теплоемкость и высокую удельную теплоту фазового перехода. Примером такого материала может служить тригидрат ацетата натрия.

Теплофизические свойства этого материала:

- теплота плавления 220 кДж/кг,

- теплоемкость твердой фазы 2 кДж/кг,

- теплоемкость жидкой фазы 2, 8 кДж/кг.

Аккумулирование тепла осуществляется как правило, за счет теплоты фазового перехода. Подбором объема теплоаккумулирующего материла 36 можно сделать одинаковыми время прогрева диска 29 и корпуса 60 турбины 11 и кольцевой вставки 34 и, как следствие, предотвратить увеличение радиального зазора на режимах форсирования.

Основными особенностями турбины 11 является наличие датчиков измерения радиального зазора 78 и бортового компьютера 79, соединенных электрическими связями 80. Возможно применение только одного датчика измерения радиального зазора 78, но это крайне нежелательно, т.к. отказ датчика может привести к аварийной ситуации.

На фиг.7 приведена кольцевая вставка 34 с ребрами 81 на кольцевой вставке 34 и/или 59 - на корпусе 60. Применение ребер 81 и 59 интенсифицирует охлаждение кольцевых вставок 34. На фиг.8 приведена кольцевая вставка 34 с турбулизаторами 82, выполненными также на внешней поверхности кольцевой вставки 34. Турбулизаторы 82 могут быть выполнены в виде цилиндров небольшого размера или любой другой формы.

В кольцевой вставке 34 могут быть установлены сквозные втулки 83, совмещенные с отверстиями 74 для прохода воздуха из полости 84 в полость 85. Во внутренней стенке 62 выполнены отверстия 86 для сброса воздуха в полость 87 за турбиной 11. Передняя часть 53 и задняя часть 64 корпуса 60 соединены между собой через кольцевую вставку 34 болтами 88 установленными между сквозными втулками 83.

На внутренней поверхности кольцевых вставок 34 может быть нанесено мягкое легкоистираемое покрытие 88, например, графит (фиг.11) или прикреплены вставки сотового уплотнения 89 (фиг.12).

На фиг.14 и 15 приведена конструкция воздухозаборника 52, который содержит патрубок забора воздуха 53 и регулятор расхода 54, корпус 55 с полостью 57, которая отверстиями 68 соединена с полостью 57. Корпус 55 имеет два кронштейна 80, которыми он крепится при помощи болтов 91 к фланцу 92 корпуса 8 камеры сгорания 7. Регулятор расхода 54 может быть любой конструкции. Для примера приведен регулятор расхода 54 в виде цилиндра 93 с прямоугольными отверстиями 90. К цилиндру 93 присоединен вал 95 с приводом 55. Привод 55 электрической связью 79 соединен с бортовым компьютером 80 (фиг.14) и закреплен кронштейном 96 на корпусе 60.

При этом целесообрзно скорость движения воздуха в полости 57 увеличить по сравнению со скоростью воздуха во втором контуре 33. Это увеличит интенсивность теплообмена. Достигается этот результат уменьшением площади поперечного сечения зазора 57 по сравнению с площадью входа воздухозаборного патрубка 53.

На фиг.16 приведена диаграмма изменения расхода воздуха для охлаждения ротора турбины 11 поз.97 в зависимости от температуры перед турбиной - Тг, из которого следует, что расход воздуха g1, охлаждающего ротор 23 турбины 11 должен увеличиваться с ростом температуры продуктов сгорания перед турбиной Тг. Эта зависимость может быть линейной, например, как показано на фиг.15. На фиг.16 приведена диаграмма изменения расхода воздуха для охлаждения статора турбины в зависимости от времени работы ГТД. Для наглядности приведены расчетные расходы охлаждающего воздуха g2, для охлаждения статора турбины 11 на трех участках работы ГТД (на режиме форсирования 98…100. Позициями 101…103 показано реальное изменение расхода воздуха g2.

РАБОТА ТУРБИНЫ

При резком изменении режима работы турбины газотурбинного двигателя, например, при его форсировании, температура продуктов сгорания перед турбиной возрастает. На номинальном режиме радиальный зазор δ0, имеет расчетное значение, а на форсажном (максиальном) режиме радиальные зазоры δ в первоначальный момент при отсутствии регулирования бы резко возрастали. При форсировании ГТД температура продуктов сгорания резко возрастает. При этом прогреваются корпуса турбины 57…59 и диск 29 с рабочими лопатками 28. Но масса диска 29 турбины 11 намного больше массы всех корпусов 57…59, поэтому зазор бы возрастал без применения средства регулирования радиального зазора. Наличие пустотелой кольцевой вставки 34, заполненной теплоаккумулирующим материалом 36 замедлит прогрев пустотелой кольцевой вставки 34 и частей 62 и 63 корпуса 60 и кольцевой вставки 34, что предотвратит увеличение радиального зазора.

Проходящий по трубопроводу высокого давления 50 через регулятор расхода 51 охлаждающий воздух охлаждает диск 29 турбины 11 и рабочие лопатки 28.

При этом изменение расхода охлаждающего воздуха через регулятор расхода 51 осуществляют только в зависимости от режима работы двигателя Тг. и изменением расхода этого воздуха не управляют радиальным зазором, так как увеличение расхода этого воздуха уменьшает КПД турбины 11. При этом трубопровод высокого давления 50 может быть подключен только к выходу из компрессора 6 (т.е. за его последней ступенью, в противном случае давления охлаждающего воздуха будет недостаточно для охлаждения перфорированного соплового аппарата 26 и перфорированных рабочих лопаток 28 турбины 11.

Охлаждающий воздух из второго контура 33, проходящий через воздухозаборник 52 и регуляторы расхода 54 поступает в кольцевой коллектор 47, потом через втулки 46 в полость 45 и далее через отверстия 66 в полости 47 и 49 и охлаждает корпуса 38…40 и кольцевую вставку 34. При этом для того, чтобы эффективность работы системы была максимальной необходимо применять относительно «холодный» воздух, который следует отбирать из-за промежуточной ступени компрессора 12 (фиг.1). Регуляторы расхода 51 и приводы 55 регуляторов 54 электрическими связями 80 соединены с бортовым компьютером 79 для управления расходами охлаждающего воздуха g1 и g2 (фиг.11 и 12)

Применение теплоаккумулирующего материала 36 выравнивает тепловые инерции ротора 23 и статора 24. При увеличении радиального зазора датчики измерения радиального зазора 78 фиксируют этот факт, и бортовой компьютер 79 по каналу связи 80 подает команду на привод 55 регулятора расхода 54 на увеличение расхода охлаждающего воздуха. При уменьшении величины радиального зазора ниже допустимого предела наоборот расход охлаждающего воздуха уменьшают. В результате предложенная система может очень точно поддерживать радиальные зазоры постоянными практически на всех режимах.

Применение изобретения позволило:

1. Обеспечить эффективное плавное регулирование радиальных зазоров в турбине газотурбинного двигателя на всех режимах.

2. Обеспечить увеличение мощности двигателя на форсажных (максимальных) режимах за счет уменьшения радиального зазора на этих режимах..

3. Обеспечить надежный взлет самолета с двигателями, оборудованными такими системами регулирования радиального зазора без предварительного прогрева ГТД или значительно уменьшить время прогрева ГТД. Это необходимо для военных самолетов.

4. Обеспечить надежный взлет самолета при высокой температуре окружающей среды, т.е. в условиях, когда взлетная тяга ГТД уменьшается..

5. Практически мгновенно переводить режим работы ГТД авиационного двигателя с крейсерского на форсажный режим. Это особенно важно для военных самолетов.

6. Упростить конструкцию элементов системы регулирования радиального зазора, уменьшить ее вес и разместить вне тракта ГТД в зоне низких температур, что повысит надежность турбины.

Похожие патенты RU2496991C1

название год авторы номер документа
ТУРБИНА ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2012
  • Болотин Николай Борисович
RU2499145C1
ДВУХКОНТУРНЫЙ ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ И СПОСОБ РЕГУЛИРОВАНИЯ РАДИАЛЬНОГО ЗАЗОРА В ТУРБИНЕ ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2012
  • Болотин Николай Борисович
RU2511860C1
ДВУХКОНТУРНЫЙ ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2012
  • Болотин Николай Борисович
RU2499894C1
ДВУХКОНТУРНЫЙ ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, СПОСОБ РЕГУЛИРОВАНИЯ РАДИАЛЬНОГО ЗАЗОРА В ТУРБИНЕ ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2012
  • Болотин Николай Борисович
RU2501956C1
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ И СПОСОБ РЕГУЛИРОВАНИЯ РАДИАЛЬНОГО ЗАЗОРА В ТУРБИНЕ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2012
  • Болотин Николай Борисович
RU2506435C2
ТУРБИНА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И СПОСОБ РЕГУЛИРОВАНИЯ РАДИАЛЬНОГО ЗАЗОРА В ТУРБИНЕ 2013
  • Болотин Николай Борисович
RU2519127C1
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2013
  • Болотин Николай Борисович
RU2532737C1
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2013
  • Болотин Николай Борисович
RU2553919C2
ТУРБИНА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И СПОСОБ РЕГУЛИРОВАНИЯ РАДИАЛЬНОГО ЗАЗОРА В ТУРБИНЕ 2013
  • Болотин Николай Борисович
RU2535453C1
ТУРБИНА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2012
  • Болотин Николай Борисович
RU2500894C1

Иллюстрации к изобретению RU 2 496 991 C1

Реферат патента 2013 года ТУРБИНА ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Турбина двухконтурного газотурбинного двигателя содержит охлаждаемую ступень с сопловым аппаратом с полостями над ним и под ним и ротор турбины с охлаждаемым рабочим колесом и аппаратом закрутки перед ним, а также статор турбины. Статор содержит корпус турбины, кольцевую вставку над рабочим колесом турбины и систему регулирования радиального зазора. Корпус турбины состоит из двух частей: передней и задней, кольцевая вставка установлена между ними. Статор выполнен охлаждаемым воздухом второго контура. Система подачи охлаждающего статор воздуха выполнена в виде установленных во втором контуре воздухозаборника, регулятора расхода с приводом, корпуса воздухозаборника. В корпусе воздухозаборника установлен перфорированный кожух. Система также содержит бортовой компьютер и датчики измерения радиального зазора, привод регулятора расхода. Датчики измерения радиального зазора соединены электрическими связями с бортовым компьютером. Достигается эффективное регулирование радиальных зазоров в турбине на всех режимах, повышение тяги двигателя на взлетном и форсажном режиме, повышение КПД и надежности турбины. 4 з.п. ф-лы, 15 ил.

Формула изобретения RU 2 496 991 C1

1. Турбина двухконтурного газотурбинного двигателя, содержащая, по меньшей мере, одну охлаждаемую ступень с сопловым аппаратом с полостями над ним и под ним, и по меньшей мере один ротор турбины с охлаждаемым рабочим колесом и аппаратом закрутки перед ним, а также статор турбины, содержащий корпус турбины, кольцевую вставку над рабочим колесом турбины и систему регулирования радиального зазора, отличающаяся тем, что корпус турбины выполнен из двух частей: передней и задней, кольцевая вставка установлена между ними, статор выполнен охлаждаемым воздухом второго контура, при этом система подачи охлаждающего статор воздуха выполнена в виде установленных во втором контуре воздухозаборника, регулятора расхода с приводом, корпуса воздухозаборника, причем в корпусе воздухозаборника установлен перфорированный кожух, а также содержит бортовой компьютер и датчики измерения радиального зазора, привод регулятора расхода и датчики измерения радиального зазора соединены электрическими связями с бортовым компьютером.

2. Турбина двухконтурного газотурбинного двигателя по п.1, отличающаяся тем, что кольцевая вставка выполнена пустотелой.

3. Турбина двухконтурного газотурбинного двигателя по п.2, отличающаяся тем, что внутренняя полость вставки заполнена теплоаккумулирующим веществом.

4. Турбина двухконтурного газотурбинного двигателя по п.1, отличающаяся тем, что на кольцевой вставке и/или корпусе турбины выполнены ребра.

5. Турбина двухконтурного газотурбинного двигателя по п.1, отличающаяся тем, что в корпусе турбины перед кольцевой вставкой выполнены радиальные отверстия, а в кольцевой вставке - сквозные осевые втулки.

Документы, цитированные в отчете о поиске Патент 2013 года RU2496991C1

УСТАНОВКА ДЛЯ ОЗОНИРОВАНИЯ ВОДЫ 1996
  • Варламов Л.И.
RU2104966C1
Электромагнитный клапан для взрывоопасных газов 1989
  • Колотушкин Виктор Васильевич
  • Буянов Виктор Иванович
  • Зайцев Александр Михайлович
  • Манохин Вячеслав Яковлевич
SU1686243A1
US 2011088405 A1, 21.04.2011
УСТРОЙСТВО ОХЛАЖДЕНИЯ ИЛИ НАГРЕВА ДЛЯ КРУГЛОГО КОРПУСА 1998
  • Фриедель Жером
  • Лестуалль Патрик
  • Шультц Кристоф
  • Супизон Жан-Люк
  • Ваш Жан
RU2210674C2
СПОСОБ УПРАВЛЕНИЯ ПОТОКОМ ВОЗДУХА В ГАЗОВОЙ ТУРБИНЕ И СИСТЕМА ДЛЯ ОСУЩЕСТВЛЕНИЯ ДАННОГО СПОСОБА 2005
  • Амиот Дени
  • Дьюни Фредерик
  • Фридель Жером
  • Каинк Кристиан
  • Руссен-Мойнье Дельфин
RU2372494C2

RU 2 496 991 C1

Авторы

Болотин Николай Борисович

Даты

2013-10-27Публикация

2012-05-21Подача