СПОСОБ ОЦЕНКИ СОСТОЯНИЯ ЭЛЕМЕНТОВ НЕЖЕСТКИХ ДОРОЖНЫХ КОНСТРУКЦИЙ СПЕКТРАЛЬНЫМ АНАЛИЗОМ ВОЛНОВЫХ ПОЛЕЙ НА СТАДИИ ЭКСПЛУАТАЦИИ Российский патент 2013 года по МПК G01M7/00 

Описание патента на изобретение RU2498254C1

Изобретение относится к области строительства и эксплуатации автомобильных дорог, а именно к методам и средствам диагностики состояния конструкций.

Рационализация выбора ремонтных мероприятий на эксплуатируемых автомобильных дорогах Российской Федерации является крайне актуальной задачей. Для ее решения необходимо внедрять в дорожную практику современные методы и средства диагностики автомобильных дорог. При этом важно оценить не только общее состояние дорожной одежды, но и состояние каждого конструктивного элемента дорожной конструкции.

На данный момент оценка состояния конструктивных элементов дорожной одежды производится разрушающим методом контроля, осуществляемым путем отбора проб материала эксплуатируемых слоев дорожной одежды, и испытания материала слоев в лабораторных условиях с определением их механических характеристик.

Известен способ Impact Echo (см. Carino N.J. The impact-echo method: an overview / National Institute of Standards and Technology Gaithersburg, MD 20899-8611 USA - 2001), позволяющий производить локализацию дефектов в покрытии дорожной конструкции. Суть метода состоит в регистрации отклика дорожной конструкции на воздействие ультразвукового источника. Недостатком данного метода является невозможность оценки состояния слоев основания и грунта земляного полотна дорожной конструкции.

Известен способ Impulse response, позволяющий оценивать состояние дорожной конструкции по показателю статической жесткости и коэффициенту затухания импульса ударного воздействия в дорожной конструкции (см. Nazarian Y. NDT of pavements: Seismic methods, 2004).

Наиболее близким к предлагаемому изобретению является способ оценки состояния дорожных конструкций спектральным анализом волновых полей при тарированном ударном воздействии (см. Пат. №2279653 RU МПК G01M 7/00, опубл. 10.07.2006). Состояние конструктивных слоев дорожной одежды оценивается такими показателями как: характер изменения экстремумов спектральных характеристик, коэффициенты затухания по значениям амплитуд ускорений и перемещений, продолжительность сигнала отклика.

Однако следует отметить, что помимо вышеприведенных параметров большое значение имеет также анализ расположения частотных резонансов на амплитудно-частотной характеристике ускорения точек поверхности покрытия, и геометрической формы чаш динамических прогибов дорожной конструкции, так как именно эти параметры являются своеобразными индикаторами состояния элементов дорожной конструкции.

Задачей изобретения является усовершенствование способа оценки состояния дорожных конструкций, позволяющее производить диагностику состояния конструктивных элементов дорожной одежды на стадии эксплуатации, по зарегистрированной в полевых условиях амплитудно-частотной характеристике ускорения точек поверхности дорожной конструкции (АЧХ ускорения) и чаше максимальных динамических прогибов, замеренных на покрытии дорожной одежды при ударном нагружении.

Сущность изобретения заключается в том, что способ оценки состояния элементов нежестких дорожных конструкций спектральным анализом волновых полей на стадии эксплуатации, включающий проведение экспериментальной регистрации амплитудно-временных характеристик ускорения точек поверхности дорожной конструкции, последующую обработку экспериментальных данных и построение экспериментальных амплитудно-частотных характеристик ускорения точек поверхности покрытия, обработка экспериментальных данных производится с использованием программного комплекса для построения характеристик отклика дорожной конструкции на ударное воздействие, при этом датчики-виброакселерометры, устанавливаются на покрытии дорожной одежды в зонах от 0 до 0,25 м, от 0.25 до 0,75 м, от 0,75 до 1,25 м, и от 1,25 до 2,5 м от точки ударного воздействия параллельно оси дороги, а оценка состояния конструктивных элементов нежесткой дорожной конструкции осуществляется путем анализа расположения частотных резонансов на амплитудно-частотной характеристике ускорения точек поверхности покрытия, геометрических форм резонансов, и геометрической форме экспериментальной чаши динамических прогибов, зарегистрированной на поверхности дорожной одежды.

Технический результат: обеспечивает возможность оценки состояния конструктивных элементов дорожной одежды на стадии эксплуатации методом неразрушающего контроля.

Применение предлагаемого способа позволит оценить состояние каждого конструктивного элемента в эксплуатируемой дорожной конструкции, путем комплексного анализа расположения частотных резонансов на амплитудно-частотной характеристике ускорения точек поверхности покрытия, геометрических форм резонансов, и геометрической форме экспериментальной чаши динамических прогибов, зарегистрированной на поверхности дорожной одежды.

Для обоснования рационального выбора точек расположения датчиков-акселерометров, были выявлены следующие закономерности влияния конструкции дорожной одежды на характер трансформации волнового поля, прошедшего в слоистой структуре от места ударного воздействия до места регистрации отклика дорожной одежды.

- Относительно высокочастотные колебания (150-300 Гц) в ближней к точке удара зоне (0-0.5 м), включают волны, отраженные от нижней границы асфальтобетонных слоев. Средний диапазон частот (50-150 Гц) включают волны, отраженные от нижней границы основания. Наиболее энергетичны эти волны на расстоянии 0.5-1.25 м. Самые же низкочастотные колебания определяют состояние грунта земляного полотна и нижележащего геологического массива. Наиболее энергетичны эти волны на расстоянии свыше 1,5 м от источника возмущений.

Также в ходе численного эксперимента были установлены следующие закономерности формирования чаши максимальных динамических прогибов дорожной конструкции при ударном воздействии:

- уменьшение модуля упругости асфальтобетонного покрытия приводит к существенным изменениям характеристик чаши максимальных динамических прогибов в ближней к месту удара зоне до 0,25 м.

- уменьшение модуля упругости основания проявляется в изменение чаши максимальных динамических прогибов в зоне 0.75-1.25 м.

- уменьшение модуля упругости грунта земляного полотна влияет на изменение формы чаш максимальных амплитуд вертикальных перемещений в зоне 1.25-2.5 м от точки ударного воздействия.

- в зоне свыше 2,5 м отклик дорожной конструкции на ударное воздействие малогабаритной установки характеризуется интенсивным затуханием и интереса не представляет.

Установленные закономерности позволяют производить объективную интерпретацию форм амплитудно-частотных характеристик ускорения точек поверхности дорожной одежды и форм чаш динамических прогибов дорожной конструкции. Комплексное рассмотрение этих параметров позволяет выявить ослабленный элемент дорожной одежды. Использование данного способа позволяет производить длительный мониторинг на эксплуатируемых участках автомобильных дорог, наблюдая за конструктивным состоянием элементов дорожной одежды.

Сущность изобретения поясняется чертежами, где:

фиг.1 - схема регистрации экспериментальной чаши максимальных динамических прогибов на поверхности дорожной конструкции, с использованием мобильного виброизмерительного комплекса ДорТрансНИИ.

фиг.2 - схема расположения пьезокерамических виброакселерометров относительно точки ударного нагружения.

фиг.3 - экспериментальная амплитудно-временная характеристика перемещения точки поверхности дорожной конструкции, полученная путем обработки экспериментальных данных, для датчика установленного на расстоянии 0,25 м от точки ударного воздействия, подключенного к первому каналу аналого-цифрового преобразователя: ось абсцисс - время, с; ось ординат - амплитуды вертикальных перемещений, м.

фиг.4 - форма амплитудно-частотной характеристики ускорений точек поверхности дорожной конструкции, полученной после применения алгоритма быстрого преобразования Фурье к амплитудно-временной характеристике ускорений, зарегистрированных датчиками акселерометрами, установленными на расстояниях 0,25; 0,75; 2.5 м.

фиг.5 - форма чаши максимальных амплитуд вертикальных прогибов дорожной конструкции (чаши динамических прогибов), зарегистрированной при экспериментальном нагружении.

фиг.6 - форма амплитудно-частотной характеристики ускорений точек поверхности дорожной конструкции, зарегистрированной на эксплуатируемом участке автомобильной дороги, при проведении эксперимента.

фиг.7 - форма экспериментальной чаши динамических прогибов зарегистрированной на эксплуатируемом участке автомобильной дороги.

Способ осуществляется следующим образом:

Мобильный виброизмерительный комплекс устанавливается на дорожном покрытии и включает: пьезокерамические виброакселерометры 1; аналого-цифровой преобразователь 2; портативный компьютер типа «NOTEBOOK» 3; малогабаритная установка ударного нагружения 4.

Датчики - пьезокерамические виброакселерометры 1 устанавливаются на расстояниях 0,25; 0,75; 1,25; 2,5 м от точки ударного воздействия. Данные, получаемые с датчика, устанавливаемого на расстоянии 1,25 м, носят вспомогательный характер и служат для более детальной оценки состояния основания дорожной конструкции. В ходе эксперимента производится серия ударов малогабаритной ударной установкой 4 по поверхности дорожной конструкции. Пьезокерамические виброакселерометры 1 преобразуют механическое воздействие в электрический сигнал. В аналогово-цифровом преобразователе 2 осуществляется преобразование сигнала в цифровой формат при помощи модуля Е14-440 «LCARD». Данные измерений передаются на портативный компьютер типа NOTEBOOK 3 через USB порт. Результаты экспериментов записываются на жесткий диск ПК типа NOTEBOOK, в бинарном формате.

Далее с использованием разработанного в среде MathCAD программного обеспечения производится обработка данных результатов экспериментальных измерений. В результате быстрого преобразования Фурье амплитудно-временной зависимости ускорений A(t) фиг.3, возможно получить спектральную плотность сигнала или амплитудно-частотную характеристику ускорений A(ω) фиг.4

С целью определения амплитудно-временной зависимости перемещений рабочего интервала производятся следующие процедуры:

1. Вычисление амплитудно-частотной характеристики перемещений Эта операция производится путем деления амплитудно-частотной характеристики ускорений на квадраты значений соответствующих циклических частот.

2. Применение к амплитудно-частотной характеристике перемещений функции обратного преобразования Фурье. В результате этой процедуры рассчитывается амплитудно-временная зависимость перемещений рабочего интервала .

Амплитудно-временная зависимость перемещений, регистрируемая по каждому датчику позволяет построить чашу динамических прогибов поверхности дорожной конструкции на удалении от точки нагружения до 2.5 м фиг.5.

Вывод о состоянии дорожной конструкции делается по экспериментальной форме амплитудно-частотной характеристики ускорения точек поверхности дорожной конструкции, расположения частотных резонансов на амплитудно-частотной характеристике ускорения точек поверхности покрытия, и форме чаши динамических прогибов. Анализ экспериментальной формы амплитудно-частотной характеристики ускорения точек поверхности дорожной конструкции производится для расстояния 0.75 м от точки ударного воздействия. Это связано с тем фактом, что средняя толщина эксплуатируемых дорожных конструкций на участках автомобильных дорог составляет как правило 0,75-0,85 м. Таким образом отклик дорожной конструкции зарегистрированный на расстоянии 0,75 м, наилучшим образом отражает состояние эксплуатируемой дорожной конструкции. Вывод о состоянии дорожной конструкции по экспериментальной форме амплитудно-частотной характеристики ускорения точек поверхности дорожной конструкции делается на основании следующих параметров:

- Наличие одного выраженного резонанса на определенной частоте (нормальная форма),

- Наличие двух резонансных пиков амплитуд колебаний (двугорбая форма),

- Наличие нескольких резонансных пиков амплитуд колебаний (зубчатая форма).

Нормальная форма АЧХ ускорения свидетельствует о согласованности в работе слоев дорожной конструкции и о ее монолитности. Двугорбая форма АЧХ указывает на снижение или местное отсутствие сцепления между слоями дорожной конструкции. Зубчатая форма АЧХ свидетельствует о полном рассогласовании в работе конструктивных слоев дорожной одежды. Зубчатость формы АЧХ ускорения объясняется тем фактом, что при динамическом воздействии на дорожную конструкцию, при отсутствующем сцеплении между слоями дорожной одежды, каждый ее элемент будет совершать колебания с собственной частотой.

Форма чаши динамических прогибов поверхности дорожной конструкции также позволяет оценить состояние элементов дорожной одежды (покрытия, основания). При ослаблении прочности слоев покрытия наименее интенсивное затухание вертикальных перемещений наблюдается в ближней зоне (0,25-0,75 м). При ослаблении прочности слоев основания наименее интенсивное затухание колебаний происходит на расстоянии 0,75-1,25 м. Аномальное строение чаши динамических прогибов (когда нарушается плавность чаши, т.е. с увеличением расстояния от точки удара наблюдается увеличение амплитуд вертикальных перемещений) свидетельствует о нарушении монолитности дорожного покрытия и о наличии сквозных трещин и существенных разрушений в дорожной конструкции.

Экспериментальные исследования состояния эксплуатируемой дорожной конструкции проводились на участке км 47 автомобильной дороги «Ростов-на-Дону - Волгодонск». На данном участке были зарегистрированы АЧХ ускорения и чаша динамических прогибов поверхности дорожной конструкции фиг.6 и фиг.7.

График АЧХ ускорения точек поверхности дорожной конструкции, зарегистрированный в зоне от 0 до 0,25 м от точки ударного воздействия, имеет нормальную форму с выраженным частотным экстремумом на частоте порядка 220-240 Гц, что свидетельствует об удовлетворительном состоянии слоев покрытия дорожной конструкции. Наличие смещения частотного максимума в область 300-350 Гц, зарегистрированное в зоне 0,75-1,25 м от точки ударного воздействия, свидетельствует о снижении несущей способности слоя основания дорожной одежды. Наличие одного резонансного пика на АЧХ ускорения свидетельствует о монолитности дорожной конструкции. Четко выраженный низкочастотный максимум, зарегистрированый в зоне 1,25-2,5 м от точки ударного воздействия, позволяет сделать вывод о достаточной несущей способности грунта земляного полотна дорожной конструкции. О снижении несущей способности слоя основания дорожной одежды также свидетельствует наличие нарушения плавности чаши динамических прогибов поверхности дорожной конструкции, зарегистрированное в зоне 0,75-1,25 м от точки ударного воздействия.

Результаты, полученные в ходе экспериментальных исследований, подтверждаются результатами лабораторных испытаний проб материала дорожной конструкции, отобранных на данном участке.

Похожие патенты RU2498254C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ФАКТИЧЕСКИХ ЗНАЧЕНИЙ ДИНАМИЧЕСКИХ МОДУЛЕЙ УПРУГОСТИ СЛОЕВ ДОРОЖНОЙ КОНСТРУКЦИИ НА СТАДИИ ЭКСПЛУАТАЦИИ 2011
  • Илиополов Сергей Константинович
  • Углова Евгения Владимировна
  • Ляпин Александр Александрович
  • Дроздов Александр Юрьевич
  • Мизонов Валентин Владимирович
  • Конорев Александр Сергеевич
  • Конорева Ольга Валериевна
  • Тиратурян Артем Николаевич
  • Акулов Владимир Владимирович
RU2451917C1
СПОСОБ ОЦЕНКИ СОСТОЯНИЯ ДОРОЖНЫХ КОНСТРУКЦИЙ СПЕКТРАЛЬНЫМ АНАЛИЗОМ ВОЛНОВЫХ ПОЛЕЙ ПРИ ТАРИРОВАННОМ УДАРНОМ ВОЗДЕЙСТВИИ 2004
  • Илиополов Сергей Константинович
  • Селезнев Михаил Георгиевич
  • Углова Евгения Владимировна
  • Лобов Дмитрий Владимирович
  • Николенко Денис Александрович
  • Николенко Максим Александрович
RU2279653C1
СПОСОБ ОЦЕНКИ СОСТОЯНИЯ ДОРОЖНЫХ КОНСТРУКЦИЙ ПРИ ЭКСПЛУАТАЦИОННОМ ВИБРАЦИОННОМ ВОЗДЕЙСТВИИ ТРАНСПОРТНЫХ СРЕДСТВ 2004
  • Илиополов С.К.
  • Селезнев М.Г.
  • Углова Е.В.
  • Дроздов А.Ю.
  • Елистратов В.А.
  • Лобов Д.В.
  • Бурштейн Е.Б.
RU2250445C1
СПОСОБ ОЦЕНКИ СОСТОЯНИЯ ДОРОЖНЫХ КОНСТРУКЦИЙ 2007
  • Белоногов Леонид Борисович
  • Акулич Юрий Владимирович
  • Беляев Дмитрий Сергеевич
RU2350918C1
Способ оценки технического состояния инженерного сооружения 2015
  • Хоменко Андрей Павлович
  • Елисеев Сергей Викторович
  • Большаков Роман Сергеевич
  • Елисеев Андрей Владимирович
  • Белялов Тимур Шамилевич
  • Мозалевская Анна Константиновна
RU2617456C1
СПОСОБ ОЦЕНКИ УСТАЛОСТИ АСФАЛЬТОБЕТОНА ПРИ ЦИКЛИЧЕСКИХ ДИНАМИЧЕСКИХ ВОЗДЕЙСТВИЯХ 2005
  • Илиополов Сергей Константинович
  • Углова Евгения Владимировна
  • Селезнев Михаил Георгиевич
  • Дровалева Ольга Валериевна
  • Пляка Павел Стефанович
  • Бессчетнов Борис Владимирович
RU2299417C2
СПОСОБ ВОСПРОИЗВЕДЕНИЯ НА БАРАБАНАХ СТЕНДА ДИНАМИЧЕСКОГО ВОЗДЕЙСТВИЯ НА ТРАНСПОРТНОЕ СРЕДСТВО, ЭКВИВАЛЕНТНОГО ПО УРОВНЮ ВОЗДЕЙСТВИЯ ОТ СЛУЧАЙНОГО ПРОФИЛЯ ИСПЫТАТЕЛЬНЫХ ДОРОГ 2021
  • Устименко Виктор Семёнович
  • Титов Николай Алексеевич
  • Игнатенко Ольга Владимировна
RU2770242C1
Способ автоматического дистанционного мониторинга накопления остаточных деформаций и колебаний тепло-влажностного режима элементов дорожных конструкций в реальных условиях эксплуатации 2019
  • Матуа Вахтанг Парменович
  • Чирва Дмитрий Владимирович
  • Мирончук Сергей Александрович
  • Солодов Виталий Владимирович
  • Сизонец Сергей Владимирович
  • Исаев Евгений Николаевич
  • Грушевенко Александр Петрович
RU2710901C1
СПОСОБ И КОНСТРУКЦИЯ СТРОИТЕЛЬСТВА И РЕМОНТА АВТОМОБИЛЬНОЙ ДОРОГИ С ТВЕРДЫМ КОЛЕЕЗАЩИЩЕННЫМ ПОКРЫТИЕМ 2009
  • Бондарев Михаил Павлович
  • Писарев Виталий Владимирович
RU2418128C1
МЕХАНИЧЕСКИЙ ФИЛЬТР ДЛЯ ПЬЕЗОАКСЕЛЕРОМЕТРА 2009
  • Зинченко Татьяна Дмитриевна
  • Клещёв Дмитрий Борисович
  • Ремезов Алексей Геннадьевич
  • Ремезов Геннадий Борисович
RU2410704C2

Иллюстрации к изобретению RU 2 498 254 C1

Реферат патента 2013 года СПОСОБ ОЦЕНКИ СОСТОЯНИЯ ЭЛЕМЕНТОВ НЕЖЕСТКИХ ДОРОЖНЫХ КОНСТРУКЦИЙ СПЕКТРАЛЬНЫМ АНАЛИЗОМ ВОЛНОВЫХ ПОЛЕЙ НА СТАДИИ ЭКСПЛУАТАЦИИ

Изобретение относится к области строительства и эксплуатации автомобильных дорог, а именно к методам и средствам диагностики состояния конструкций. При реализации способа на поверхности дорожной конструкции производится ударное воздействие, измерение реакции дорожной конструкции производится датчиками - пьезокерамическими виброакселерометрами, установленными на полосе наката в контрольных точках на различных расстояниях от центра области контакта на поверхности покрытия параллельно оси автомобильной дороги. К амплитудно-временной характеристике ускорения точек покрытия, зарегистрированной при ударном воздействии датчиками акселерометрами, применяют преобразование Фурье, в результате которого получают амплитудно-частотную характеристику ускорения и затем получают амплитудно-частотную характеристку перемещений. Далее получают амплитудно-временную характеристику перемещений точек поверхности дорожной конструкции но каждому датчику, после чего строят чашу динамических прогибов. Оценка состояния конструктивных элементов нежесткой дорожной конструкции осуществляется путем анализа расположения частотных резонансов на амплитудно-частотной характеристике ускорения точек поверхности покрытия, геометрических форм резонансов, и геометрической форме экспериментальной чаши динамических прогибов, зарегистрированной на поверхности дорожной одежды. Технический результат заключается в возможности оценки состояния фактических значений модулей упругости каждого конструктивного слоя дорожной одежды на стадии эксплуатации. 7 ил.

Формула изобретения RU 2 498 254 C1

Способ оценки состояния элементов нежестких дорожных конструкций спектральным анализом волновых полей на стадии эксплуатации, включающий проведение экспериментальной регистрации амплитудно-временных характеристик ускорения точек поверхности дорожной конструкции, последующую обработку экспериментальных данных и построение экспериментальных амплитудно-частотных характеристик ускорения точек поверхности покрытия, при этом обработка экспериментальных данных производится с использованием программного комплекса для построения характеристик отклика дорожной конструкции на ударное воздействие, отличающийся тем, что датчики виброакселерометры устанавливаются на покрытии дорожной одежды в зонах от 0 до 0,25 м, от 0,25 до 0,75 м, от 0,75 до 1,25 м и от 1,25 до 2,5 м от точки ударного воздействия параллельно оси дороги, а оценка состояния конструктивных элементов нежесткой дорожной конструкции осуществляется путем анализа расположения частотных резонансов на амплитудно-частотной характеристике ускорения точек поверхности покрытия, геометрических форм резонансов, и геометрической форме экспериментальной чаши динамических прогибов, зарегистрированной на поверхности дорожной одежды.

Документы, цитированные в отчете о поиске Патент 2013 года RU2498254C1

СПОСОБ ОЦЕНКИ СОСТОЯНИЯ ДОРОЖНЫХ КОНСТРУКЦИЙ СПЕКТРАЛЬНЫМ АНАЛИЗОМ ВОЛНОВЫХ ПОЛЕЙ ПРИ ТАРИРОВАННОМ УДАРНОМ ВОЗДЕЙСТВИИ 2004
  • Илиополов Сергей Константинович
  • Селезнев Михаил Георгиевич
  • Углова Евгения Владимировна
  • Лобов Дмитрий Владимирович
  • Николенко Денис Александрович
  • Николенко Максим Александрович
RU2279653C1
Ремонт и содержание автомобильных дорог: Справочная энциклопедия дорожника (СЭД)
Т.П
/ А.П
Васильев, Э.В
Дингес, М.С
Коганзон и др
/Под ред
А.П
Васильева
- М.: ФГУП "Информавтодор", 2004, 507 с., гл.10, рис.10.11
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК СЛОЯ ПОЧВОГРУНТА, ПРЕИМУЩЕСТВЕННО ИМЕЮЩЕГО НИЗКУЮ И СРЕДНЮЮ ПЛОТНОСТЬ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Носов С.В.
  • Рощупкин М.В.
  • Кононов А.Л.
  • Каплун А.Г.
RU2192006C2
Эллипсограф 1950
  • Андреев М.И.
SU91458A1

RU 2 498 254 C1

Авторы

Илиополов Сергей Константинович

Углова Евгения Владимировна

Ляпин Александр Александрович

Дроздов Александр Юрьевич

Тиратурян Артем Николаевич

Мизонов Валентин Владимирович

Конорева Ольга Валериевна

Конорев Александр Сергеевич

Акулов Владимир Владимирович

Даты

2013-11-10Публикация

2012-05-11Подача