ТЕРМОЭМИССИОННАЯ СИСТЕМА ЭЛЕКТРОСНАБЖЕНИЯ ЗДАНИЯ Российский патент 2013 года по МПК E04C2/26 

Описание патента на изобретение RU2499107C1

Предлагаемое изобретение относится к строительству и может быть использовано при изготовлении декоративных ограждений наружных стен и кровельных покрытий для уменьшения теплопотерь зданий, совместной утилизации этих теплопотерь, тепла и холода наружного воздуха в летний и зимний периоды для получения электрической энергии.

Известен вентилируемый стеновой элемент, содержащий внутренние вертикальные щелевые полости между несущей конструкцией ограждения, соединенного через ребра жесткости с его наружной поверхностью (декоративным ограждением), сообщающейся с атмосферой через отверстия в ней [Патент РФ №2181821, МКЛ E04C 2/26, МКЛ E04B 2/42, 2002].

Известно вентилируемое кровельное покрытие, включающее основание кровли и размещенные на нем готовые мастичные элементы, образующие вентилируемые полости [Патент РФ №2079615, МКЛ E04D 13/00, 1997].

Основными недостатками известных вентилируемого стенового элемента и кровельного покрытия являются недостаточная прочность декоративного ограждения и мастичных элементов, невозможность утилизации тепла наружного воздуха и тепловых потерь здания, что снижает их надежность и эффективность.

Более близким по технической сущности к предлагаемому изобретению является слоистая панель вентилируемого стенового ограждения, включающая несущий внутренний слой (несущее ограждение) и наружный слой из бетона плотной структуры (декоративное ограждение), армированные контурной сеточной арматурой, средний слой из крупнопористого материала со сквозными пустотами (щелями, воздушными зазорами), сообщающимися с атмосферой через систему вытяжных отверстий и каналов [Патент РФ №2221119, МКЛ E04C 2/26, МКЛ E04B 2/14, 2004].

Основным недостатком известной слоистой панели вентилируемого стенового ограждения является невозможность утилизации тепла наружного воздуха и тепловых потерь здания для получения электричества, что снижает ее эффективность.

Техническим результатом предлагаемого изобретения является повышение надежности и эффективности термоэмиссионной системы электроснабжения здания.

Технический результат достигается термоэмиссионной системой электроснабжения здания содержащей: наружные ограждения, кровельное покрытие, электрический аккумулятор, причем наружные ограждения здания и кровельное покрытие покрыты снаружи декоративными ограждениями, плотно прижатыми к ним, состоящими из секций, каждая из которых представляет собой термоэлектрический преобразователь, состоящий из прямоугольного полого корпуса, выполненного из материала-диэлектрика с высокой теплопроводностью, армированного контурной арматурой, между крышкой и днищем которого имеется замкнутая воздушная полость, контурная арматура состоит из элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов M1 и М2 и спаянные на концах между собой, образующие зигзагообразные ряды, устроенные таким образом, что левые и правые части проволочных отрезков со спаянными концами согнуты под углом 90° и располагаются в слоях материала-диэлектрика крышки и днища, параллельно их поверхности не касаясь ее, средние части парных проволочных отрезков расположены в воздушной полости, крайние проволочные отрезки крайних зигзагообразных рядов соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с электрическим аккумулятором.

На фиг.1-6 представлена предлагаемая термоэмиссионная система электроснабжения здания (на фиг.1 - общий вид, на фиг.2-6 основные узлы).

Предлагаемая термоэмиссионная система электроснабжения здания (ТЭСЭСЗ) содержит: наружные ограждения 1, кровельное покрытие 2 на несущей конструкции крыши (на фиг.1-6 не показана) и электрический аккумулятор 3, помещенный, например, на чердачном перекрытии 4, причем наружные ограждения здания 1 и кровельное покрытие 2 покрыты снаружи декоративными ограждениями 5, плотно прижатыми к ним, состоящими из секций 6, каждая из которых представляет собой термоэлектрический преобразователь (ТЭП) 7, состоящий из прямоугольного полого корпуса 8, выполненного из материала-диэлектрика с высокой теплопроводностью, армированного контурной арматурой 9, между крышкой 10 и днищем 11 которого имеется замкнутая воздушная полость 12, контурная арматура 9 состоит из элементов 13 ТЭП 7, представляющих собой парные проволочные отрезки 14 и 15, выполненные из разных металлов M1 и М2, спаянные на концах между собой, образующие зигзагообразные ряды 16, устроенные таким образом, что левые и правые части проволочных отрезков 14 и 15 со спаянными концами согнуты под углом 90° и располагаются в слоях материала-диэлектрика крышки 10 и днища 11, параллельно их поверхности не касаясь ее, средние части проволочных отрезков 14 и 15 расположены в замкнутой воздушной полости 12, крайние проволочные отрезки 14 и 15 крайних зигзагообразных рядов 16 соединены с однополюсными коллекторами электрических зарядов 17 и 18 (размещение коллекторов 17, 18 на фиг.1-6 показано условно), которые, в свою очередь, соединены с электрическим аккумулятором 3.

В основу работы предлагаемой ТЭСЭСЗ положено следующее. Так как контурная арматура 9 секций 6 декоративных ограждений 5 наружного ограждения 1 и кровельного покрытия 2 выполнена в виде зигзагообразных рядов 16, изготовленных из парных проволочных отрезков 14 и 15, выполненных из разных металлов M1 и М2, спаянных на концах между собой, то при нагреве (охлаждении) одних спаянных концов проволочных отрезков 14 и 15 элементов ТЭП снаружи в крышках 10 и охлаждении (нагреве) противоположных им спаянных концов элементов ТЭП, находящихся в днищах 11, прижатых к наружным 1 и кровельным 2 ограждениям в летнее время (зимнее время), на противоположных спаянных концах парных проволочных отрезков 14 и 15 устанавливаются разные температуры, в зоне контакта (спае) металлов M1 и М2 происходит термическая эмиссия электронов, в результате чего в зигзагообразных рядах 16 появляется термоэлектричество [С.Г. Калашников. Электричество. - М: «Наука», 1970, с.502-506]. При этом зигзагообразные ряды 16 одновременно выполняют функцию контурной арматуры 9 в секциях 6, повышая прочностные свойства декоративных ограждений 5.

ТЭСЭСЗ работает следующим образом. В летнее время наружный воздух и солнечные лучи нагревают крышки 10 корпусов 8, выполненных из материала с высокой теплопроводностью секций 6, в которых размещены левые спаи проволочных отрезков 14 и 15 элементов 13 ТЭП 7, результате чего эти спаи нагреваются. Так как днища 11 корпусов 8 ТЭП 7, прижаты к массиву ограждений 5 и кровле 2, то за счет теплообмена теплопроводностью с ними в днищах 11 устанавливается равная с ними температура, которая в летнее время меньше, чем температура крышек 10. Соответственно, температура правых спаев проволочных отрезков 14 и 15 также меньше, чем температура левых спаев этих же пар отрезков. В тоже время наличие замкнутой воздушной полости в корпусах 8 обеспечивает тепловую изоляцию ограждений 1 и кровли 5, снижая тем самым поступление тепла вовнутрь здания летом. При этом, одновременно с процессом теплопередачи в результате разности температур нагретых левых спаянных концов проволочных отрезков 14 и 15 элементов 13 ТЭП 7 и охлаждения правых спаянных концов этих элементов ТЭП 7 в зигзагообразных рядах 16 появляется термоэлектричество, которое из секций 6 через однополюсные коллекторы электрических зарядов 17 и 18, поступает в электрический аккумулятор 3, откуда подается потребителю.

В зимнее время холодный наружный воздух охлаждает крышки 10 корпусов 8, выполненных из материала с высокой теплопроводностью секций 6, в которых размещены левые спаи проволочных отрезков 14 и 15 элементов 13 ТЭП 7, результате чего эти спаи охлаждаются. В тоже время днища 11 корпусов 8, прижатые к массиву ограждений 5 и кровле 2, за счет теплообмена теплопроводностью с ними приобретают равную с ними температуру, которая в зимнее время значительно больше, чем температура крышек 10, а соответственно температура правых спаев проволочных отрезков 14 и 15 также больше, чем температура левых спаев этих же пар отрезков. Наличие замкнутой воздушной полости 12 в корпусах 8 обеспечивает тепловую изоляцию ограждений 1 и кровли 5, снижая тем самым теплопотери здания. При этом одновременно с процессом теплопередачи в результате разности температур холодных левых спаянных концов проволочных отрезков 14 и 15 элементов 13 ТЭП 7 и теплых правых спаянных концов этих элементов ТЭП 7 в зигзагообразных рядах 16 появляется термоэлектричество, которое из секций 6 через однополюсные коллекторы электрических зарядов 17 и 18, поступает в электрический аккумулятор 3, откуда подается потребителю.

Величина разности электрического потенциала на коллекторах 17 и 18 и сила электрического тока зависит от характеристик пар металлов M1 и М2, из которых изготовлены проволочные отрезки 14 и 15, числа их пар в зигзагообразных рядах 16 и их числа в секциях 6, разности температур на правых и левых спаянных концах элементов ТЭП 7 и числа секций 6 в декоративных ограждениях 5. Полученный электрический ток можно использовать для освещения здания, горячего водоснабжения и обогрева чердачных помещений.

Таким образом, предлагаемая ТЭСЭСЗ обеспечивает как в летнее, так и зимнее время, наряду с уменьшением нагрева наружных ограждений здания и уменьшением теплопотерь от них в окружающую среду, также получение электрической энергии, которую можно использовать для нужд освещения, горячего водоснабжения и обогрева чердачных помещений здания (в зимнее время), снизив тем самым энергопотребление здания.

Похожие патенты RU2499107C1

название год авторы номер документа
РЕСУРСОСБЕРЕГАЮЩАЯ СИСТЕМА ЭНЕРГОСНАБЖЕНИЯ ЗДАНИЯ 2011
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Журавлев Александр Юрьевич
RU2462568C1
ГЕЛИОТЕРМОЭМИССИОННАЯ СИСТЕМА ЭЛЕКТРОСНАБЖЕНИЯ ЗДАНИЯ 2012
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Журавлев Александр Юрьевич
  • Пивоваров Антон Сергеевич
  • Лысенко Иван Викторович
  • Косинов Андрей Владимирович
RU2507353C1
Походная гелиотермоэлектростанция 2016
  • Ежов Владимир Сергеевич
  • Емельянов Сергей Геннадьевич
  • Добросердов Олег Гурьевич
RU2622495C1
Теплотрубная гелиотермоэлектростанция 2016
  • Ежов Владимир Сергеевич
  • Емельянов Сергей Геннадьевич
  • Березин Сергей Владимирович
RU2630363C1
УНИВЕРСАЛЬНЫЙ ТЕРМОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2014
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Березин Сергей Владимирович
  • Антагулов Тагир Леронович
RU2575769C1
Переносной термоэлектрогенератор 2018
  • Ежов Владимир Сергеевич
  • Бурцев Алексей Петрович
  • Перепелица Никита Сергеевич
  • Бурцев Александр Петрович
  • Ермаков Дмитрий Андреевич
RU2698937C1
Компактный термоэлектрогенератор 2017
  • Ежов Владимир Сергеевич
RU2654980C1
ОКОННЫЙ СТЕКЛОБЛОК-ЭЛЕКТРОГЕНЕРАТОР 2013
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Панин Александр Андреевич
  • Смирнов Александр Геннадьевич
  • Красников Артем Сергеевич
RU2533698C1
Ленточный термоэлектрогенератор 2017
  • Ежов Владимир Сергеевич
RU2676803C1
Компактный термоэлектрический генератор 2017
  • Ежов Владимир Сергеевич
RU2650758C1

Иллюстрации к изобретению RU 2 499 107 C1

Реферат патента 2013 года ТЕРМОЭМИССИОННАЯ СИСТЕМА ЭЛЕКТРОСНАБЖЕНИЯ ЗДАНИЯ

Изобретение относится к строительству, в частности к изготовлению декоративных ограждений наружных стен и кровельных покрытий для уменьшения теплопотерь зданий, совместной утилизации этих теплопотерь, тепла и холода наружного воздуха в летний и зимний периоды для получения электрической энергии. Техническим результатом предлагаемого изобретения является повышение надежности и эффективности системы электроснабжения здания. Термоэмиссионная система электроснабжения здания содержит: наружные ограждения, кровельное покрытие, электрический аккумулятор. Причем наружные ограждения здания и кровельное покрытие покрыты снаружи декоративными ограждениями, плотно прижатыми к ним, состоящими из секций, каждая из которых представляет собой термоэлектрический преобразователь. Преобразователь состоит из прямоугольного полого корпуса, армированного контурной арматурой, между крышкой и днищем которого имеется замкнутая воздушная полость. Контурная арматура состоит из элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов M1 и М2 и спаянные на концах между собой, образующие зигзагообразные ряды. 6 ил.

Формула изобретения RU 2 499 107 C1

Термоэмиссионная система электроснабжения здания, включающая несущие ограждения, кровельное покрытие, покрытые снаружи декоративными ограждениями, собранными из секций, армированных контурной арматурой, отличающаяся тем, что декоративные ограждения плотно прижаты к несущим ограждениям и кровельному покрытию и состоят из секций, каждая из которых представляет собой термоэлектрический преобразователь, состоящий из прямоугольного полого корпуса, выполненного из материала-диэлектрика с высокой теплопроводностью, между крышкой и днищем которого имеется замкнутая воздушная полость, контурная арматура состоит из элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов M1 и М2 и спаянные на концах между собой, образующие зигзагообразные ряды, устроенные таким образом, что левые и правые части проволочных отрезков со спаянными концами согнуты под углом 90° и располагаются в слоях материала - диэлектрика крышки и днища, параллельно их поверхности не касаясь ее, средние части парных проволочных отрезков расположены в воздушной полости, крайние проволочные отрезки крайних зигзагообразных рядов соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с электрическим аккумулятором.

Документы, цитированные в отчете о поиске Патент 2013 года RU2499107C1

Слоистая панель вентилируемого стенового ограждения 2002
  • Баширов Х.З.
RU2221119C1
ТЕПЛОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР 2010
  • Ежов Владимир Сергеевич
RU2425295C1
Водяная спиральная турбина 1929
  • Парфенов М.Д.
SU16030A1
US 4580487 A, 08.04.1986
СТАНОК ДЛЯ ИЗГОТОВЛЕНИЯ ФАСОННЫХ ДЕРЕВЯННЫХ ИЗДЕЛИЙ 0
  • Э. В. Пников Артинский Механический Завод
SU290833A1

RU 2 499 107 C1

Авторы

Ежов Владимир Сергеевич

Семичева Наталья Евгеньевна

Журавлев Александр Юрьевич

Даты

2013-11-20Публикация

2012-05-03Подача