СПОСОБ ОПРЕДЕЛЕНИЯ АМПЛИТУДНО-ФАЗОВОЙ ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ ДИНАМИЧЕСКОГО ОБЪЕКТА Российский патент 2013 года по МПК G01R23/16 

Описание патента на изобретение RU2499268C1

Изобретение относится к области испытаний и исследований динамических систем и может найти применение в ракетно-космической, авиационной, станкостроительной, машиностроительной, электронной и других областях техники.

Известен способ определения амплитудно-фазовой частотной характеристики динамического объекта (см. Вавилов А.А., Солодовников А.И. Экспериментальное определение частотных характеристик автоматических систем. Москва - Ленинград: Государственное энергетическое издательство, 1963, стр.68-76, 93-103), заключающийся в подаче на вход динамического объекта моногармонического сигнала возбуждения на заданных частотах, регистрации на каждой заданной частоте входного моногармонического сигнала возбуждения и выходного периодического сигнала динамического объекта, определении коэффициентов Фурье первой гармоники выходного периодического сигнала на каждом периоде входного моногармонического сигнала по известным соотношениям и определении амплитудо-частотной характеристики динамического объекта как зависимости от частоты входного моногармонического сигнала отношений амплитуды первой гармоники выходного периодического сигнала, определяемой по значениям коэффициентов Фурье на последнем периоде входного моногармонического сигнала по известному соотношению, к амплитуде входного моногармонического сигнала возбуждения, а также определении фазовой частотной характеристики, как зависимости от частоты входного моногармонического сигнала фазового сдвига первой гармоники выходного периодического сигнала относительно входного моногармонического сигнала, определяемого по значениям коэффициентов Фурье на последнем периоде входного моногармонического сигнала по известному соотношению в режиме установившихся периодических колебаний.

Недостатком этого способа определения амплитудно-фазовой частотной характеристики динамического объекта является его большая продолжительность, так как заранее неизвестно время окончания переходного процесса втягивания динамического объекта в периодические колебания. Кроме этого, некоторые нелинейные динамические объекты не имеют установившихся периодических колебаний на выходе при моногармоническом возбуждении. Поэтому при исследовании или испытании таких объектов даже самый длительный эксперимент может приводить к большим неточностям определения частотных характеристик, так как для таких объектов речь может идти только об определении усредненных частотных характеристик.

Известен способ определения амплитудно-фазовой частотной характеристики динамического объекта - прототип (см. Методы расчета частотных характеристик систем управления вектором тяги ракетных двигателей / О.Б. Белоногов [и др.] // Ракетно-космическая техника. Сер.XII. 1998. Сер.XII. Вып.3-4, стр.259-284), заключающийся в подаче на вход динамического объекта моногармонического сигнала возбуждения на заданных частотах, регистрации на каждой заданной частоте входного моногармонического сигнала возбуждения и выходного периодического сигнала динамического объекта, определении шага разбиения периода входного моыогармонического сигнала по времени и числа значений ординат выходного периодического сигнала в зависимости от частоты, определении коэффициентов Фурье исследуемой гармоники выходного периодического сигнала на каждом периоде входного моногармонического сигнала, определении средних значений коэффициентов Фурье исследуемой гармоники за пройденное количество периодов входного моногармонического сигнала, проведении сравнения модулей отношений разности модулей средних значений каждого из коэффициентов Фурье исследуемой гармоники на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром, и когда все определенные модули отношений станут меньше этого наперед заданного точностного параметра определении амплитуды исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала, определении относительной амплитуды исследуемой гармоники выходного периодического сигнала как отношения амплитуды исследуемой гармоники выходного периодического сигнала, к амплитуде входного моногармонического сигнала возбуждения, а также определении фазового сдвига исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала.

Этот способ существенно сокращает продолжительность исследований или испытаний и позволяет более точно определять амплитудно-фазовые частотные характеристики любых гармоник динамических объектов, в том числе и тех динамических объектов, которые не имеют установившихся периодических колебаний на выходе при моногармоническом возбуждении. Однако, точность определения амплитудно-фазовых частотные характеристик и при этом способе недостаточна потому, что переходный процесс втягивания динамического объекта в вынужденные периодические колебания заканчивается только тогда, когда средние значения коэффициентов Фурье и соответствующих им амплитуды и фазового сдвига всех составляющих гармоник выходного сигнала становятся достаточно постоянными. Но такой подход к построению способа определения частотных характеристик динамического объекта в принципе невозможен, так как число составляющих гармоник выходного периодического сигнала бесконечно. Тем не менее, точность способа может быть повышена, если при анализе помимо исследуемой гармоники использовать несколько близких к ней наиболее значимых гармоник.

Техническим результатом изобретения является повышение точности определения амплитудно-фазовых частотных характеристик динамического объекта.

Технический результат достигается тем, что в известном способе определения амплитудно-фазовой частотной характеристики динамического объекта, заключающемся в подаче на вход динамического объекта моногармонического сигнала возбуждения на заданных частотах, регистрации на каждой заданной частоте входного моногармонического сигнала возбуждения и выходного периодического сигнала динамического объекта, определении шага разбиения периода входного моногармонического сигнала по времени и числа значений ординат выходного периодического сигнала в зависимости от частоты, определении коэффициентов Фурье исследуемой гармоники выходного периодического сигнала на каждом периоде входного моногармонического сигнала, определении средних значений коэффициентов Фурье исследуемой гармоники за пройденное количество периодов входного моногармонического сигнала, проведении сравнения модулей отношений разности модулей средних значений каждого из коэффициентов Фурье исследуемой гармоники на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром, при этом в отличие от известного способа, на каждом периоде входного моногармонического сигнала определяют коэффициенты Фурье n≥1 дополнительных гармоник выходного периодического сигнала, отличных от исследуемой и определяют средние значения коэффициентов Фурье этих дополнительных гармоник за пройденное количество периодов входного моногармонического сигнала, проводят сравнение модулей отношений разности модулей средних значений каждого из коэффициентов Фурье дополнительных гармоник на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром, при этом входной моногармонический сигнал подают на вход динамического объекта до тех пор, пока все определенные модули отношений для исследуемой и дополнительных гармоник не станут меньше этого наперед заданного точностного параметра, после чего определяют амплитуду исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала, определяют относительную амплитуду исследуемой гармоники выходного периодического сигнала как отношение амплитуды исследуемой гармоники выходного периодического сигнала к амплитуде входного моногармонического сигнала возбуждения, а также определяют фазовый сдвиг исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моыогармонического сигнала.

При таком способе определения амплитудно-фазовой частотной характеристики анализ завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания проводится не только по исследуемой гармонике, но и по нескольким дополнительным гармоникам. Для достижения достаточного постоянства коэффициентов Фурье и соответствующих им амплитуды и фазового сдвига исследуемой и дополнительных гармоник выходного периодического сигнала на каждой из частот входного моногармонического сигнала необходимо различное число пройденных периодов. В этом случае окончание переходного процесса втягивания динамического объекта в вынужденные периодические колебания определяется числом необходимых периодов для завершения переходного процесса той гармоники, для которой оно является максимальным. Это оказывает влияние на значения определяемых относительной амплитуды и фазового сдвига исследуемой гармоники выходного периодического сигнала динамического объекта. Таким образом, это приводит к повышению точности определения амплитудно-фазовых частотных характеристик исследуемой гармоники динамического объекта.

Так как заявленная совокупность существенных признаков способа позволяет обеспечить технический результат, то заявленный способ соответствует критерию "изобретательский уровень".

Суть способа поясняется с помощью чертежа, на котором изображена блок-схема экспериментальной установки для определения амплитудно-фазовых частотных характеристик динамического объекта. В качестве примера реализации заявленного способа рассмотрим способ определения амплитудно-фазовой частотной характеристики первой гармоники динамического объекта, в соответствие с которым анализу подвергаются дополнительно вторая и третья гармоники его выходного периодического сигнала.

Экспериментальная установка, изображенная на чертеже, включает в себя испытуемый динамический объект 1, генератор (синтезатор) входного моногармонического сигнала 2, регистратор 3 входного моногармонического сигнала и выходного периодического сигнала динамического объекта и анализатор 4.

В качестве генератора (синтезатора) 2 входного моногармонического сигнала может быть использован, например, низкочастотный генератор периодических колебаний типа НГПК-4 или синтезатор-блок анализатора частотных характеристик FRA 1250 «Solartron», выпускаемый фирмой «Solartron Electroniks Groop Ltd.» [2].

В качестве регистратора 3 входного моногармонического сигнала и выходного периодического сигнала динамического объекта может быть использован многоканальный регистратор данных типа «Orion-4», также выпускаемый фирмой «Solartron Electroniks Groop Ltd.» или другой многоканальный аналого-цифровой преобразователь с требуемыми характеристиками.

В качестве анализатора 4 может быть использован персональный компьютер с соответствующим специальным программным обеспечением и необходимой для проведения вычислений в реальном режиме времени тактовой частотой его генератора.

При включении экспериментальной установки генератор (синтезатор) 2 вырабатывает моногармонический сигнал амплитудой Ау определенной частоты f(nf), где nf - номер частоты из заданных nfm частот, который подается на вход испытуемого динамического объекта 1 и в первый канал регистратора 3.

При этом на выходе испытуемого динамического объекта 1 возникает периодический сигнал, который поступает во второй канал регистратора 3. Регистратор 3 оцифровывает входной моногармонический сигнал и выходной периодический сигнал динамического объекта 1 и посылает их в анализатор 4.

Анализатор 4 с целью получения результатов с одинаковой точностью на каждой из фиксированных частот определяет значение шага h разбиения периода Т входного моногармонического сигнала по времени t по выражению [2]:

h = 1 / K f f ( n f ) , ( 1 )

где Kf - коэффициент, величина которого определяет максимальное значение шага по времени на минимальной частоте входного моногармонического сигнала, обеспечивающего точность определения коэффициентов Фурье, и число значений ординат сигналов jm по выражению [2]:

jm=T/h.

Далее, анализатор 4 на каждом периоде входного моногармонического сигнала определяет его амплитуду, коэффициенты Фурье первой гармоники выходного периодического сигнала и двух его дополнительных гармоник - второй и третьей по известным соотношениям [2]

где P1, P2, Р3 - действительные составляющие (действительные коэффициенты Фурье) 1-й, 2-й и 3-й гармоник выходного периодического сигнала соответственно;

Q1, Q2, Q3 - мнимые составляющие (мнимые коэффициенты Фурье) 1-й, 2-й и 3-й гармоник выходного периодического сигнала соответственно;

Uп - выходной периодический сигнал динамического объекта;

i - номер периода частоты входного моногармонического сигнала;

t - значение текущего времени.

Проводится определение средних значений коэффициентов Фурье исследуемой и дополнительной гармоник выходного периодического сигнала за пройденное количество периодов входного моногармонического сигнала:

где n - значение номера последнего периода входного моногармонического сигнала.

Проводится сравнение модулей отношений разности модулей средних значений каждого из коэффициентов Фурье исследуемой и дополнительных гармоник на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром ε:

Значение точностного параметра ε, умноженное на 100% (ε×100%), показывает точность определения амплитудно-фазовой частотной характеристики динамического объекта в процентах. Выбор значения точностного параметра является предметом оптимизации для конкретного динамического объекта, зависит от его физико-технических свойств, их изменчивости во времени при функционировании динамического объекта и на практике определяется экспериментально.

Если все неравенства (14)-(19) выполняются, тогда:

- определяют амплитуду исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала:

A ( i ) = P c 1 ( i ) 2 + Q c 1 ( i ) 2 ; ( 20 )

- определяют относительную амплитуду исследуемой гармоники выходного периодического сигнала как отношение амплитуды исследуемой гармоники выходного периодического сигнала к амплитуде входного моногармонического сигнала возбуждения:

A ¯ ( i ) = A ( i ) A y ; ( 21 )

определяют фазовый сдвиг исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала:

Далее, генератор (синтезатор) 2 последовательно переключают на следующую частоту f(nf) из заданных nf частот и описанный выше цикл действий повторяется на каждой частоте.

При необходимости, в рамках данного способа, кроме относительной амплитуды и фазового сдвига исследуемой гармоники выходного периодического сигнала динамического объекта на каждой частоте f(nf) входного моногармонического сигнала могут быть определены относительные амплитуды и фазовые сдвиги его дополнительных гармоник.

Таким образом, вследствие того что анализ завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания проводится не только по исследуемой гармонике, но и по нескольким дополнительным гармоникам, повышается точность определения амплитудно-фазовой частотной характеристики динамического объекта.

Литература

1. Вавилов А.А., Солодовников А.И. Экспериментальное определение частотных характеристик автоматических систем. Москва - Ленинград: Государственное энергетическое издательство, 1963. Стр.68-76, 93-103.

2. Методы расчета частотных характеристик систем управления вектором тяги ракетных двигателей / О.Б. Белоногов [и др.] // Ракетно-космическая техника. Сер.XII. 1998. Сер.XII. Вып.3-4. Стр.259-284 - прототип.

Похожие патенты RU2499268C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЧАСТОТНЫХ ХАРАКТЕРИСТИК ФУНКЦИОНИРУЮЩИХ ОБЪЕКТОВ 2003
  • Горячев Владимир Федорович
  • Гудим Александр Сергеевич
RU2285282C2
Способ динамических испытаний конструкций и систем на механические и электронные воздействия 2021
  • Оболенский Сергей Владимирович
  • Зельманов Самуил Соломонович
  • Крылов Владимир Владимирович
RU2787559C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТНЫХ ХАРАКТЕРИСТИК ИЗМЕРИТЕЛЬНЫХ КАНАЛОВ ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНЫХ СИСТЕМ 2000
  • Шевеленко В.Д.
  • Кутузов В.И.
  • Шевеленко Д.В.
  • Квитек Е.В.
RU2200959C2
СПОСОБ КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ АВТОКОЛЕБАТЕЛЬНЫХ РУЛЕВЫХ ПРИВОДОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Фимушкин В.С.
  • Рогов С.Г.
  • Гусев А.В.
  • Чистяков Ю.Н.
  • Тошнов Ф.Ф.
RU2145052C1
АДАПТИВНАЯ СИСТЕМА УПРАВЛЕНИЯ 2007
  • Спицын Александр Владимирович
  • Мазуров Вячеслав Михайлович
RU2339988C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЧАСТОТНЫХ ХАРАКТЕРИСТИК СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ 2001
  • Савенков В.В.
  • Дуплин Н.И.
  • Тищенко А.К.
  • Лившин Г.Д.
RU2201614C2
ЦИФРОВОЙ АНАЛИЗАТОР ЧАСТОТНЫХ ХАРАКТЕРИСТИК 1966
  • Смеляков В.В.
  • Минц М.Я.
  • Балашов Л.Л.
  • Гапченко В.П.
  • Дорошенко А.В.
  • Чинков В.Н.
SU222741A1
СПОСОБ ОПРЕДЕЛЕНИЯ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ СИГНАЛОВ (ВАРИАНТЫ) 2023
  • Аванесян Гарри Романович
RU2808934C1
Устройство для определения коэффи-циЕНТОВ гАРМОНичЕСКОй лиНЕАРи-зАции 1979
  • Соседка Вилий Лукич
  • Коломойцева Людмила Федоровна
SU796791A1
Устройство для определения амплитудно-фазовых характеристик системы регулирования 1978
  • Соседка Вилий Лукич
SU930268A1

Реферат патента 2013 года СПОСОБ ОПРЕДЕЛЕНИЯ АМПЛИТУДНО-ФАЗОВОЙ ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ ДИНАМИЧЕСКОГО ОБЪЕКТА

Способ относится к области испытаний и исследований динамических систем. Способ определения амплитудно-фазовых частотных характеристик динамического объекта предполагает проведение анализа завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания и проводится на каждой частоте входного моногармонического сигнала до тех пор, пока средние определяемые значения коэффициентов Фурье выходного сигнала не станут достаточно постоянными, т.е. до тех пор, пока относительные разности между вновь вычисленными средними значениями коэффициентов Фурье выходного сигнала и предыдущими значениями этих параметров не станут по модулю меньше наперед заданного точностного параметра. При этом анализ завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания проводится по нескольким дополнительным гармоникам. В этом случае окончание переходного процесса втягивания динамического объекта в вынужденные периодические колебания определяется числом необходимых периодов для завершения переходного процесса той гармоники, для которой оно является максимальным. Технический результат - повышение точности определения амплитудно-фазовых частотных характеристик. 1 ил.

Формула изобретения RU 2 499 268 C1

Способ определения амплитудно-фазовой частотной характеристики динамического объекта, заключающийся в подаче на вход динамического объекта моногармонического сигнала возбуждения на заданных частотах, регистрации на каждой заданной частоте входного моногармонического сигнала возбуждения и выходного периодического сигнала динамического объекта, определении шага разбиения периода входного моногармонического сигнала по времени и числа значений ординат выходного периодического сигнала в зависимости от частоты, определении коэффициентов Фурье исследуемой гармоники выходного периодического сигнала на каждом периоде входного моногармонического сигнала, определении средних значений коэффициентов Фурье исследуемой гармоники за пройденное количество периодов входного моногармонического сигнала, проведении сравнения модулей отношений разности модулей средних значений каждого из коэффициентов Фурье исследуемой гармоники на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром, отличающийся тем, что на каждом периоде входного моногармонического сигнала определяют коэффициенты Фурье n≥1 дополнительных гармоник выходного периодического сигнала, отличных от исследуемой, и определяют средние значения коэффициентов Фурье этих дополнительных гармоник за пройденное количество периодов входного моногармонического сигнала, проводят сравнение модулей отношений разности модулей средних значений каждого из коэффициентов Фурье дополнительных гармоник на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром, при этом входной моногармонический сигнал подают на вход динамического объекта до тех пор, пока все определенные модули отношений для исследуемой и дополнительных гармоник не станут меньше этого наперед заданного точностного параметра, после чего определяют амплитуду исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала, определяют относительную амплитуду исследуемой гармоники выходного периодического сигнала как отношение амплитуды исследуемой гармоники выходного периодического сигнала к амплитуде входного моногармонического сигнала возбуждения, а также определяют фазовый сдвиг исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала.

Документы, цитированные в отчете о поиске Патент 2013 года RU2499268C1

Методы расчета частотных характеристик систем управления вектором тяги ракетных двигателей / О.Б
Белоногов [и др.] // Ракетно-космическая техника
Сер.XII, 1998
Сер.XII, вып.3-4, с.259-284
Способ определения статической характеристики нелинейного элемента электронных устройств 1984
  • Галяминский Владимир Сергеевич
  • Пестовский Валерий Николаевич
SU1347041A1
СПОСОБ ИЗМЕРЕНИЯ АМПЛИТУДНОЙ И ФАЗОВОЙ ЧАСТОТНЫХ ХАРАКТЕРИСТИК ЛИНЕЙНЫХ СИСТЕМИзвестны способы определения амплитудных и фазовых частотных характеристик, при которых регистрируют установившиеся колебания в линейных системах, вход которых возмущают гармоническими колебаниями различных частот известного диапазона.Предложенный способ отличается тем, что для сокращения времени и объема измерений, обеспечения возможности снятия характеристик при неточно известной частоте входного гармонического воздействия и обеспечения возможности использования для обработки результатов измерений цифровых вычислительных машин в три последовательных момента времени через равные интервалы, превышающие полупериод устанощившихся колебаний, измеряют по три сигнала, пропорциональных ординатам колебаний иа входе и выходе системы, находят отношения, например, входных сигналов между собой, суммируют получившиеся напряжения, пропорциональные этим отношениям, и определяют те->&'3вх11— arccos —>&IBXВ моменты времени t—А^, t, /-|-А/^ регист- не 15 рируют ординаты 5—8 колебаний на входе и выходе системы, соответствующие значениям, обозиаченным в формулахМ23'2вкущую круговую частоту гармонического воздействия, соответствующие ей пиковые значения амплитуд колебаний на входе и выходе системы, их отношение и фазовый сдвиг. 5 Измерения производят в три последовательные момента времени, интервалы между которыми А/ равны и должны быть меньше половины иериода Т устаиовившихся колебанш"!.Для иояснения сути способа рассмотрим 10 чертеж, где изображены два гармонических процесса на входе 1 и выходе 2 систел1ы, частотные характеристики которой подлежат определению.^'вх ' "^вх ' 'J^sjn ' ^IBHX ' ''^вых ' -''Звых'.ио которы-м определяют круговую частоту (о, 20 амплитудные значения колебаний на входе Дх и выходе Лвых системы и фазовый сдвиг Ф между этими колебаниями но формулам1. _ _ ^ / З' 0
SU237262A1
СПОСОБ АНАЛИЗА ИЗМЕРИТЕЛЬНЫХ СИГНАЛОВ С КОНТРОЛИРУЕМОГО ОБЪЕКТА (ВАРИАНТЫ) 2003
  • Омельченко В.В.
  • Терентьев А.В.
  • Терентьев В.Н.
RU2263924C2
US 20100141269 A1, 10.06.2010
Гармонический анализатор спектра 1988
  • Волонцевич Валерий Борисович
  • Антонец Николай Иванович
  • Кисурин Василий Николаевич
  • Волонцевич Олег Валерьевич
SU1564560A1

RU 2 499 268 C1

Авторы

Белоногов Олег Борисович

Даты

2013-11-20Публикация

2012-04-19Подача