СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКИХ СУБСТРАТОВ В УДОБРЕНИЯ И ГАЗООБРАЗНЫЙ ЭНЕРГОНОСИТЕЛЬ Российский патент 2013 года по МПК C02F11/02 C02F11/12 B09B3/00 

Описание патента на изобретение RU2500628C2

Предлагаемый способ относится к области утилизации концентрированных органических субстратов, таких как бесподстилочный навоз, помет, осадки и илы сооружений механо-биологической очистки хозяйственно-бытовых и близких к ним по составу производственных сточных вод.

Способ может использоваться в таких отраслях, как животно- и птицеводство, очистка сточных вод в системе ЖКХ и АПК.

Переработке согласно предполагаемому изобретению подлежат органические субстраты с влажностью преимущественно 92-96%.

Известен способ анаэробной переработки органических субстратов в удобрения и энергию, согласно которому исходный бесподстилочный навоз подвергается анаэробной переработке в биогаз, используемый для выработки товарной энергии, и эффлюент, являющийся основой для приготовления различных удобрительных смесей. (См. кн. Ковалев Н.Г., Глазков И.К. Проектирование систем утилизации навоза на комплексах. М.: Агропромиздат, 1989, с.103-105). Применение данного способа обеспечивает обеззараживание исходного субстрата в соответствии с действующими санитарными требованиями и нормами, получение удобрений с повышенным содержанием аммонийного азота, а также товарной энергии.

Основными недостатками являются: высокие капитальные затраты, связанные со значительной продолжительностью анаэробного процесса (не менее 10-15 суток); необходимость использования значительной доли производимого биогаза (до 50-70%) для собственных нужд процесса.

Указанные недостатки в известной степени в известной степени устраняются путем введения дополнительной биологической обработки исходного субстрата.

Известен способ снижения объемов основных сооружений анаэробной переработки - метантенков - посредством введения дополнительной анаэробной фазы, обеспечивающей глубокий гидролиз исходного субстрата, накопление питательных компонентов в наиболее приемлемой для основной метаногенерирующей анаэробной фазы форме, см. кн. Яковлев С.В., Воронов Ю.В. Водоотведение и очистка сточных вод. М.: АСВ, 2004, с.473-475.

Основным недостатком такого способа является невысокая степень снижения объемов основных сооружений анаэробной обработки субстрата, значительный расход биогаза на собственные нужды анаэробных процессов.

Дополнительным недостатком является необходимость поддержания термофильного режима анаэробной обработки для обеспечения необходимой степени обеззараживания субстрата.

Наиболее близким к предлагаемому изобретению является способ, согласно которому исходный субстрат подвергают предварительной аэробной обработке с распадом не более 10-15% органического вещества субстрата. Подготовленный таким образом субстрат обладает начальной температурой до 60°С, что позволяет исключить дорогостоящее и сложное в эксплуатации теплообменное оборудование и обеспечить необходимую степень обеззараживания.

Объем анаэробного биореактора-метантенка при этом снижается в 1,2-4 раза, весь произведенный биогаз является товарным. Высокая интенсивность анаэробного процесса объясняется глубоким гидролизом и повышением буферности субстрата на аэробной стадии. Способ - прототип представлен в кн. Понтер Л.И., Гольдфарб Л.Л. Метантенки. М.: Стройиздат, 1991, с.94-97.

Основным недостатком прототипа является нерациональное использование тепловой энергии, генерируемой на аэробной стадии обработки, и невысоким уровнем использования биогенных элементов, в первую очередь азота, содержащихся в эффлюенте.

Так как аэробную стадию проводят, как правило, в термофильном режиме (надежное обеззараживание достигается в температурном диапазоне 50-60°С), а анаэробную - в мезофильном (мезофильно обработанный субстрат обладает лучшими седиментационными свойствами), применяют регенеративный теплообмен между аэробно обработанным и исходным субстратом.

При влажности 92-96% реализация теплообмена представляет собой трудно решаемую задачу в силу неудовлетворительных реологических характеристик и низкими теплообменными свойствами субстрата.

Значительная часть тепловой энергии, вырабатываемой на аэробной стадии процесса, теряется с влажными газообразными продуктами метаболизма (до 15-20%). Практически достижимая степень усвоения кислорода в аэробном термофильном процессе не превышает 50%, что также является причиной снижения энергетической эффективности процесса.

При разделении эффлюента на фракции значительная часть азота и калия переходит в жидкую фракцию, объемы которой существенно превосходят объемы твердой фракции и круглогодичное использование которой в агротехнических целях весьма проблематично (см. Васильев В.А., Филиппова Н.В. Справочник по органическим удобрениям. М.: Агропромиздат, 1988, с.87).

Задачей предлагаемого изобретения является повышение энергоэффективности процесса переработки органических субстратов в удобрения и газообразный энергоноситель, за счет устранения указанных недостатков.

В результате использования предлагаемого изобретения существенно (до 1 порядка) снижается продолжительность пребывания аэробно подготовленного нагретого и гидролизованного субстрата на лимитирующей анаэробной стадии, что позволяет добиться соответствующего снижения массогабаритных показателей оборудования, отказаться от ненадежного теплообменного оборудования и обеспечить эффективное использование элементов питания эффлюента в агротехнических целях. Энергоэффективность процесса возрастает.

Технический результат достигается тем, что исходный субстрат подвергают аэробной обработке с образованием нагретого и гидролизованного субстрата и нагретых влажных кислородосодержащих газов, анаэробный обработке с образованием нагретого эффлюента и биогаза и разделению на фракции, разделение на фракции производят после аэробной обработки, анаэробной обработке подвергают жидкую фракцию, нагретый эффлюент используют в качестве теплоносителя для регулирования теплового режима аэробной обработки и в качестве источника аммонийного азота для обогащения твердой фракции, а нагретые влажные кислородосодержащие газы используют для предварительного нагрева и аэрации исходного субстрата.

Сущность предлагаемого изобретения поясняется фигурой 1, на которой представлена структурная схема реализации способа.

Согласно изобретению исходный субстрат подвергается предварительной обработке в контактном аппарате 1, затем аэробной микробиологической обработке в аэробном биореакторе 2. Подготовленный таким образом нагретый и гидролизованный субстрат, основное количество органического вещества которого переходит в растворенную и тонкодисперсную фазу, подвергается разделению на жидкую и твердую фракции в устройстве механического обезвоживания 3. Твердая фракция поступает в смеситель 4 для приготовления удобрительных смесей, в который направляется также наполнитель (например, торф), и аммиачная вода. Жидкая фракция из устройства механического обезвоживания 3 направляется в анаэробный биореактор-метантенк 5, с прикрепленной микрофлорой, в котором осуществляется биоконверсия органического вещества в обеззараженный стабилизированный жидкий продукт - эффлюент, с температурой термофильного процесса анаэробной обработки (50-55°С), и биогаз. Эффлюент отличается повышенным содержанием аммонийного азота (его концентрация увеличивается примерно в 2 раза в сравнении с субстратом); биогаз содержит до 70-80% метана и используется для получения электрической и тепловой энергии в когенерационной установке 6. Тепловая энергия с теплоносителем (горячей водой, паром) передается внешним потребителям; некоторая (незначительная) часть электрической энергии применяется в системе для обеспечения функционирования ее активных элементов (насосов, компрессоров, смесителей и т.п.).

В целях увеличения глубины рекуперации аммонийного азота, содержащегося в эффлюенте, применяется коррекция водородного показателя (рН) эффлюента в сторону его увеличения путем введения корректирующих реагентов (извести, щелочи). Коррекция рН и отдувка аммиака осуществляется в блоке отдувки 7. Аммиачная вода из блока 7 направляется в смеситель 4 для обогащения твердых компонентов (наполнителя, твердой фракции эффлюента) удобрений.

Нагретый эффлюент (имеющий температуру процесса термофильной анаэробной обработки) направляется в аэробный биореактор 2 для стабилизации температурного режима аэробного процесса, что особенно важно при работе на обедненных органическим веществом субстратах. Также на начальной стадии процесса при работе аэробного биореактора в периодическом режиме. Охлажденный эффлюент поступает на доочистку в типовые сооружения искусственной (аэротенки) или естественной (биологические пруды) очистки. При необходимости эффлюент поступает на доочистку, минуя аэробный биореактор.

При реализации данного способа такие компоненты системы, как устройство механического обезвоживания 3, смеситель 4, когенерационная установка 6 являются типизированными и широко применяемыми на практике. В качестве устройства механического обезвоживания 3 могут использоваться центрифуга, фильтр-пресс, шнековый пресс. Когенерационная установка 6 может быть реализована на основе ДВС или ГТУ. В основу блока отдувки может быть положено известное аэрируемое устройство типа градирни, или десорбционное устройство.

В качестве анаэробного биореактора-метантенка 5 предпочтительно использование аппарата проточного типа - биофильтра (ABF), UASB - реактора и т.п., обеспечивающего время экспозиции подготовленного субстрата на уровне 0,5-3 суток при рабочей температуре 30-60°С.

Аэробный биореактор 2 представляет собой герметичный аппарат, оснащенный патрубками подведения и отведения субстрата от отведения газов реакции, а также средствами аэрации и перемешивания известной конструкции (Wolinski W.K. "Aerobic thermophilic Sludge Stabilization using air", Water Pollution control, 1985).

В качестве обязательного конструктивного элемента аэробного биореактора 2 должна быть предусмотрена теплообменная поверхность 8, обеспечивающая тепловой контакт между жидким нагретым эффлюентом и предварительно обработанным субстратом.

Контактный аппарат 1 может быть выполнен в виде массообменного аппарата противоточного типа, в котором влажный нагретый кислородсодержащий газ из аэробного биореактора 2 подается в нижнюю часть через распределитель противотоком по отношению к исходному субстрату. В процессе предварительной обработки субстрата в контактном аппарате 1 происходит его предварительное насыщение кислородом, а также некоторый подогрев, что позволяет более рационально использовать биоэнергетический потенциал субстрата на последующих микробиологических стадиях обработки.

Ориентировочные параметры процесса обработки субстрата согласно предлагаемому способу применительно к биоэнергетической установке, рассчитанной на переработку 10 т/сут. исходного субстрата влажностью 95% и зольностью 15%:

1. Выход биогаза Vбг=170 м3/сут, с учетом снижения удельного выхода после аэробной обработки с распадом органического вещества на уровне 10%.

2. Мощность когенерационной установки: с общим к.п.д. η0=90%

- тепловая Qт=27 кВт;

- электрическая Qэ=13,5 кВт.

3. Тепловая мощность, отводимая с газообразными продуктами метаболизма на аэробной стадии обработки при доле (об.) водяных паров Nв.п=13%: Qскр=3 кВт

4. Тепловая мощность, развиваемая в процессе аэробной термофильной обработки: Qбио=13,3 кВт.

5. Начальная температура субстрата, при которой обеспечивается термофильный режим последующей анаэробной обработки (tан=53°):t0=21,6°C.

6. Начальная температура субстрата при использовании скрытой теплоты паров в контактном аппарате: t0'=14,4°C.

7. Основные конструктивные параметры аэробно-анаэробного процесса с предобработкой субстрата в контактном аппарате:

- аэробный биореактор: Vаэ=10 м3

- анаэробный биореактор: Vан=29 м3

- контактный аппарат: Vк=0,26 м3.

Суммарный объем основного оборудования при реализации способа: Vacи=39,76 м3.

Объем анаэробного биореактора при анаэробной обработке в термофильном режиме: Vана=100 м3, что в 2,55 раз превышает объем основного оборудования при реализации предполагаемого изобретения.

8. Тепловая мощность, необходимая для нагрева исходного субстрата до термофильной температуры с t0=14,4°C

Qн=16,4 кВт, что составляет 60% располагаемой тепловой энергии.

9. Располагаемая товарная тепловая энергия:

- при анаэробной обработке:: Qане=10,6 кВт

- согласно предлагаемому способу: Qсие=16,9 кВт, что в 1,6 раза превышает Qане.

10. Тепловая мощность, которая может быть использована для термостабилизации аэробного режима или для дополнительного подогрева исходного субстрата и в регенеративном цикле «эффлюент - субстрат» при коэффициенте регенерации ηр=0,4 Qрег=16,3 кВт.

11. Минимальная температура субстрата, при которой обеспечивается термофильный режим обработки согласно предлагаемому способу t0min=6°С. Условные обозначения: ИС - исходный субстрат; ПОС - предварительно обработанный субстрат; ПС - подготовленный субстрат; ТФ - твердая фракция; ЖФ - жидкая фракция; Н - наполнитель; У - удобрение; НЭ - нагретый эффлюент; ОЭ - охлажденный эффлюент; Т - теплоноситель; БГ - биогаз; Г - нагретые кислородсодержащие газы; ДГ - дымовые газы; ЭЭ - электроэнергия; АВ - аммиачная вода; КР - корректирующие реагенты.

Похожие патенты RU2500628C2

название год авторы номер документа
СПОСОБ БИОЛОГИЧЕСКОЙ ОБРАБОТКИ КОНЦЕНТРИРОВАННЫХ ОРГАНИЧЕСКИХ СУБСТРАТОВ С ПОЛУЧЕНИЕМ УДОБРЕНИЙ, ГАЗООБРАЗНОГО ЭНЕРГОНОСИТЕЛЯ И ТЕХНИЧЕСКОЙ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2012
  • Камайданов Евгений Николаевич
  • Ковалев Дмитрий Александрович
  • Ковалев Андрей Александрович
RU2504520C2
СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКИХ СУБСТРАТОВ В ГАЗООБРАЗНЫЕ ЭНЕРГОНОСИТЕЛИ И УДОБРЕНИЯ 2012
  • Ковалев Дмитрий Александрович
  • Камайданов Евгений Николаевич
  • Ковалев Андрей Александрович
RU2518592C2
Способ получения газообразного энергоносителя и органоминеральных удобрений из бесподстилочного навоза и устройство для его реализации 2015
  • Камайданов Евгений Николаевич
  • Ковалев Дмитрий Александрович
RU2608814C2
СПОСОБ АНАЭРОБНОЙ ПЕРЕРАБОТКИ ЖИДКИХ ОРГАНИЧЕСКИХ ОТХОДОВ 2019
  • Ковалев Дмитрий Александрович
  • Ковалев Андрей Александрович
  • Карт Михаил Аркадьевич
  • Серегин Станислав Александрович
RU2690463C1
Способ анаэробной переработки жидких органических отходов с предварительной обработкой озоном в аппарате вихревого слоя 2022
  • Ковалёв Дмитрий Александрович
  • Ковалёв Андрей Александрович
  • Журавлева Елена Александровна
  • Литти Юрий Владимирович
RU2788787C1
Способ анаэробной переработки жидких органических отходов 2022
  • Ковалёв Дмитрий Александрович
  • Ковалёв Андрей Александрович
  • Журавлева Елена Александровна
  • Литти Юрий Владимирович
RU2786392C1
СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКИХ СУБСТРАТОВ В БИОГАЗ, ЖИДКИЕ И ТВЕРДЫЕ УДОБРЕНИЯ И ТЕХНИЧЕСКУЮ ВОДУ, УСТРОЙСТВО И АППАРАТ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2013
  • Камайданов Евгений Николаевич
  • Лебедев Владимир Владимирович
  • Ковалев Дмитрий Александрович
RU2542108C2
СПОСОБ ПОЛУЧЕНИЯ БИОГАЗА И УДОБРЕНИЙ ИЗ БЕСПОДСТИЛОЧНОГО НАВОЗА И ДРУГИХ ОРГАНИЧЕСКИХ СУБСТРАТОВ 2014
  • Камайданов Евгений Николаевич
  • Ковалев Дмитрий Александрович
RU2577168C2
СПОСОБ АЭРОБНО-АНАЭРОБНОЙ ОБРАБОТКИ БЕСПОДСТИЛОЧНОГО НАВОЗА С ПОЛУЧЕНИЕМ БИОГАЗА, ЭФФЛЮЕНТА, БИОШЛАМА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2015
  • Камайданов Евгений Николаевич
  • Ковалев Дмитрий Александрович
RU2600996C2
УСТРОЙСТВО ДЛЯ АЭРОБНО-АНАЭРОБНОЙ ОБРАБОТКИ ОРГАНИЧЕСКИХ СУБСТРАТОВ 2012
  • Ковалев Дмитрий Александрович
  • Камайданов Евгений Николаевич
RU2500627C2

Иллюстрации к изобретению RU 2 500 628 C2

Реферат патента 2013 года СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКИХ СУБСТРАТОВ В УДОБРЕНИЯ И ГАЗООБРАЗНЫЙ ЭНЕРГОНОСИТЕЛЬ

Предлагаемый способ относится к области утилизации концентрированных органических субстратов, таких как бесподстилочный навоз, помет, осадки и илы сооружений механо-биологической очистки хозяйственно-бытовых и близких к ним по составу производственных сточных вод. Способ переработки органических субстратов в удобрения и газообразный энергоноситель включает аэробную обработку исходного субстрата с образованием нагретого и гидролизованного субстрата и нагретых влажных кислородосодержащих газов, анаэробную обработку с образованием нагретого эффлюента и биогаза и разделение на фракции. Разделение на фракции производят после аэробной обработки. Анаэробной обработке подвергают жидкую фракцию. Нагретый эффлюент используют в качестве теплоносителя для регулирования теплового режима аэробной обработки и в качестве источника аммонийного азота для обогащения твердой фракции. Нагретые влажные кислородосодержащие газы используют для предварительного нагрева и аэрации исходного субстрата. Изобретение позволяет снизить продолжительность пребывания аэробно-подготовленного нагретого и гидролизованного субстрата на лимитирующей анаэробной стадии, снизить массогабаритные показатели оборудования, отказаться от ненадежного теплообменного оборудования и обеспечить эффективное использование элементов питания эффлюента в агротехнических целях, повышая энергоэффективность процесса. 1 ил.

Формула изобретения RU 2 500 628 C2

Способ переработки органических субстратов в удобрения и газообразный энергоноситель, согласно которому исходный субстрат подвергают аэробной обработке с образованием нагретого и гидролизованного субстрата и нагретых влажных кислородосодержащих газов, анаэробной обработке с образованием нагретого эффлюента и биогаза и разделению на фракции, отличающийся тем, что разделение на фракции производят после аэробной обработки, анаэробной обработке подвергают жидкую фракцию, нагретый эффлюент используют в качестве теплоносителя для регулирования теплового режима аэробной обработки и в качестве источника аммонийного азота для обогащения твердой фракции, а нагретые влажные кислородосодержащие газы используют для предварительного нагрева и аэрации исходного субстрата.

Документы, цитированные в отчете о поиске Патент 2013 года RU2500628C2

ГЮНТЕР Л.И., ГОЛЬДФАРБ Л.Л
Метантенки
- М.: Стройиздат, 1991, с.94-97
RU 94031559 А1, 10.07.1996
Домовый номерной фонарь, служащий одновременно для указания названия улицы и номера дома и для освещения прилежащего участка улицы 1917
  • Шикульский П.Л.
SU93A1
EP 1702809 A2, 20.09.2006
Шланговое соединение 0
  • Борисов С.С.
SU88A1

RU 2 500 628 C2

Авторы

Камайданов Евгений Николаевич

Ковалев Дмитрий Александрович

Даты

2013-12-10Публикация

2012-02-29Подача