ТЕРМИЧЕСКИЙ СПОСОБ ИССЛЕДОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ СКВАЖИНЫ Российский патент 2013 года по МПК E21B47/103 

Описание патента на изобретение RU2500887C1

Изобретение относится к гидрогеологии, бурению и эксплуатации скважин и может быть использовано при проведении геофизических исследований технического состояния скважин.

Известен способ аналогичного назначения, реализуемый в устройстве для определения скорости и направления потока жидкости в скважине с помощью электролитического индикатора и датчиков электропроводности /а.с. СССР №661481, кл. Е21В 47/00, G01V 9/02, 1979/.

Недостатком аналога является невозможность с его помощью проведения исследований температурных аномалий вдоль ствола скважины, несущих информацию о теплофизических свойствах окружающих скважину горных пород.

Известен термический способ исследования температурных аномалий вдоль ствола скважины с помощью термического каротажа, заключающийся в спуске или подъеме термометра вдоль или параллельно оси скважины с равномерной скоростью при непрерывной регистрации выходного сигнала, по которому судят о теплофизических свойствах окружающих скважину горных пород /Патент РФ №2136880, кл. Е21В 47/00, 1999/.

Данный способ принят за прототип.

Недостатком прототипа являются трудности интерпретации результатов термических исследований для случаев, когда в скважине присутствуют перетоки флюида.

Техническим результатом, получаемым от внедрения изобретения, является расширение эксплуатационных возможностей термического способа на случай, когда в скважине присутствуют перетоки флюида.

Данный технический результат достигается за счет того, что в известном термическом способе исследования технического состояния скважины, заключающемся в спуске или подъеме термометра вдоль или параллельно оси скважины с равномерной скоростью при непрерывной регистрации выходного сигнала термометра, по которому судят о теплофизических свойствах окружающих скважину горных пород, совместно с термометром осуществляют спуск или подъем термоанемометра, при этом термочувствительные элементы термометра и термоанемометра совпадают по геометрическим и теплофизическим параметрам, причем при движении термометра и термоанемометра проводят вычитание выходного сигнала термометра из выходного сигнала термоанемометра, а по полученной разности сигналов дополнительно судят о наличии перетоков флюида в исследуемой скважине и их скорости.

Изобретение поясняется чертежами. На фиг.1 представлена структурная схема реализации способа; на фиг.2 - пример измерительной аппаратуры для проведения исследований технического состояния скважины.

Термический способ исследования технического состояния скважины 1 (фиг.1) реализуется по системе, содержащей термочувствительные элементы 2, 3 (т.ч.э. 2, 3), закрепленные на каротажном кабеле 4, и спускоподъемное устройство 5 (СПУ 5). Т.ч.э. 3 - нагреваемый, а т.ч.э. 2 - ненагреваемый термоэлемент. Данные т.ч.э. 2, 3 выполняют роли датчиков термометра и термоанемометра.

Т.ч.э. 2, 3 термометра и термоанемометра совпадают по геометрическим и теплофизическим параметрам и могут быть выполнены, например, в виде термисторов (полупроводниковых термосопротивлений).

Выход т.ч.э. 2 термометра подключен через усилитель 6 к регистрирующему прибору 7.

Выход нагреваемого т.ч.э. 3 термоанемометра подключен к одному из плеч мостовой схемы 8, в смежное плечо которого включен ненагреваемый т.ч.э. 2.

Мостовая схема 8 выполняет функции вычитающего устройства с источником питания 9 и регистрирующим устройством 10.

Поскольку в настоящее время схемы термоанемометров хорошо разработаны, их описание подробно не приводится.

Если источник питания 9 выполнить стабилизированным, то измерения скорости V потока будут проводиться термоанемометром по методу постоянного тока. При этом предварительно мост 8 балансируется для скорости U каротажа, для которой регистрирующий прибор 10 покажет нулевой сигнал. Тогда любое отклонение от нуля на выходе мостовой схемы 8 указывает на наличие в скважине 1 мест 11 перетока флюида 12.

Датчик термоанемометра не будет реагировать на изменение температуры в местах температурных аномалий на уровнях расположения пород 13, 14, обладающих другими теплофизическими свойствами по сравнению с фоном.

С другой стороны, т.ч.э. 2 термометра будет реагировать на появление температурных аномалий и на температуру флюида 12, но не будет реагировать на скорость V флюида.

Таким образом, мостовая схема 8, выполняя роль вычитающего устройства, позволяет на одном регистрирующем приборе 10 измерять скорость флюида и регистрировать место его появления, а на другом регистрирующем приборе 7 измерять и регистрировать температуру и места расположения температурных аномалий.

Для увеличения чувствительности температурных измерений впереди по ходу движения т.ч.э. 2, 3 можно расположить нагреватель (на чертеже не показан), как это сделано в прототипе.

Похожие патенты RU2500887C1

название год авторы номер документа
ТЕРМИЧЕСКАЯ КАРОТАЖНАЯ СИСТЕМА ДЛЯ ОБСЛЕДОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ СКВАЖИН 2012
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
RU2506424C2
СПОСОБ ИССЛЕДОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ СКВАЖИНЫ 2011
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
RU2500886C2
СПОСОБ КОМПЛЕКСНОЙ ОЦЕНКИ КАЧЕСТВА ЦЕМЕНТИРОВАНИЯ СКВАЖИН И РАЗОБЩЕНИЯ ПЛАСТОВ-КОЛЛЕКТОРОВ 2007
  • Жвачкин Сергей Анатольевич
  • Баканов Юрий Иванович
  • Гераськин Вадим Георгиевич
  • Климов Вячеслав Васильевич
  • Севрюков Геннадий Алексеевич
  • Кобелева Надежда Ивановна
  • Черномашенко Александр Николаевич
  • Енгибарян Аркадий Арменович
  • Захаров Андрей Александрович
  • Бражников Андрей Александрович
  • Ретюнский Сергей Николаевич
RU2405936C2
АКУСТИЧЕСКИЙ СПОСОБ ВЫЯВЛЕНИЯ МЕСТА РАСПОЛОЖЕНИЯ ЗАКОЛОННЫХ ПЕРЕТОКОВ ФЛЮИДА 2011
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
RU2462592C1
АКУСТИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ПЕРЕТОКА ФЛЮИДА В ЗАКОЛОННОМ ПРОСТРАНСТВЕ СКВАЖИНЫ 2012
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
  • Скрынник Татьяна Владимировна
RU2500888C1
СПОСОБ ОБНАРУЖЕНИЯ ТЕХНОГЕННЫХ СКОПЛЕНИЙ ФЛЮИДОВ В ГЕОЛОГИЧЕСКИХ ОБЪЕКТАХ, ВСКРЫТЫХ СКВАЖИНАМИ 1991
  • Давлетшин А.А.
  • Даминов Н.Г.
  • Куштанова Г.Г.
  • Марков А.И.
  • Шулаев В.Ф.
RU2013533C1
Способ определения заколонных перетоков 2018
  • Мусаев Гайса Лемиевич
  • Кухаркин Сергей Моисеевич
  • Юнусова Регина Гайсаевна
RU2723808C2
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ 2000
  • Климов В.В.
  • Будников В.Ф.
  • Браташ И.В.
  • Ретюнский С.Н.
  • Костенко Е.М.
  • Енгибарян А.А.
  • Брусаков А.А.
RU2193169C2
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ 2005
  • Баканов Юрий Иванович
  • Колесниченко Владимир Петрович
  • Гераськин Вадим Георгиевич
  • Кравцов Игорь Николаевич
  • Климов Вячеслав Васильевич
  • Захаров Андрей Александрович
  • Радыгин Александр Геннадьевич
  • Ретюнский Сергей Николаевич
  • Сергеев Сергей Владимирович
  • Глухов Алексей Александрович
RU2315268C2
Способ выявления работающих интервалов пласта 1980
  • Филиппов Александр Иванович
  • Шарафутдинов Рамиль Файзырович
SU987082A1

Иллюстрации к изобретению RU 2 500 887 C1

Реферат патента 2013 года ТЕРМИЧЕСКИЙ СПОСОБ ИССЛЕДОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ СКВАЖИНЫ

Изобретение относится к гидрогеологии, бурению и эксплуатации скважин и может быть использовано для проведения геофизических исследований технического состояния скважин. Техническим результатом, получаемым от внедрения изобретения, является расширение эксплуатационных возможностей способа на случай присутствия в скважине перетоков флюида. Существо способа заключается в том, что температурные аномалии регистрируются с помощью термометра, а перетоки флюида - с помощью термоанемометра, из выходного сигнала которого вычитается выходной сигнал термометра. 2 ил.

Формула изобретения RU 2 500 887 C1

Термический способ исследования технического состояния скважины, заключающийся в спуске или подъеме термометра вдоль или параллельно оси скважины с равномерной скоростью при непрерывной регистрации выходного сигнала термометра, по которому судят о теплофизических свойствах окружающих скважину горных пород, отличающийся тем, что совместно с термометром осуществляют спуск или подъем термоанемометра, при этом термочувствительные элементы термометра и термоанемометра совпадают по геометрическим и теплофизическим параметрам, причем при движении термометра и термоанемометра проводят вычитание выходного сигнала термометра из выходного сигнала термоанемометра, а по полученной разности сигналов дополнительно судят о наличии перетоков флюида в исследуемой скважине и их скорости.

Документы, цитированные в отчете о поиске Патент 2013 года RU2500887C1

СПОСОБ ИССЛЕДОВАНИЯ СКВАЖИН 1997
  • Чесноков В.А.
  • Чеснокова Е.В.
RU2136880C1
Устройство для определения направления и скорости движения подземных вод 1977
  • Дубинчук Владимир Тимофеевич
SU661481A1
Способ термометрии действующих нефтяных скважин 1977
  • Рамазанов Айрат Шайхуллович
SU672333A1
Способ определения интервалов притока пластового флюида в скважине 1982
  • Халисматов Ирмухамат
  • Дивеев Исмаил Исхакович
  • Бабаджанов Ташпулат Лепесович
  • Ибрагимов Зариф Сабирович
  • Хон Андрей Васильевич
  • Садыков Абдужамиль
SU1079827A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПРИТОКА ФЛЮИДА В СКВАЖИНЕ 1996
  • Чесноков В.А.
RU2108457C1
СПОСОБ ИССЛЕДОВАНИЯ НА ГЕРМЕТИЧНОСТЬ НАГНЕТАТЕЛЬНОЙ СКВАЖИНЫ, ОБОРУДОВАННОЙ НАСОСНО-КОМПРЕССОРНЫМИ ТРУБАМИ 2000
  • Закиров А.Ф.
  • Миннуллин Р.М.
  • Назаров В.Ф.
  • Мухамадиев Р.С.
  • Вильданов Р.Р.
RU2166628C1
СПОСОБ ИССЛЕДОВАНИЯ СКВАЖИН 2001
  • Чесноков В.А.
  • Хасанов М.М.
  • Янкин Б.Д.
RU2194855C1
СПОСОБ ИЗМЕРЕНИЯ СКОРОСТИ ПОТОКА ЖИДКОСТИ В СКВАЖИНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Миллер Андрей Аскольдович
  • Миллер Аскольд Владимирович
  • Мурзаков Евгений Михайлович
  • Степанов Станислав Владимирович
  • Судничников Андрей Витальевич
  • Теплухин Владимир Клавдиевич
  • Шараев Альберт Петрович
  • Вильданов Рафаэль Расимович
  • Закиров Айрат Фикусович
  • Миннуллин Рашит Марданович
RU2280159C2
US 5353873 A, 11.10.1994
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1

RU 2 500 887 C1

Авторы

Аксютин Олег Евгеньевич

Власов Сергей Викторович

Егурцов Сергей Алексеевич

Иванов Юрий Владимирович

Даты

2013-12-10Публикация

2012-05-03Подача