Изобретение относится к автоматике электрических сетей и предназначено для контроля ложного или аварийного отключения и отказа автоматического повторного включения (АПВ) головного выключателя (ГВ) линии, питающей трансформаторную подстанцию, с определением вида короткого замыкания.
В известном способе контроля ложного отключения секционирующего выключателя в линии кольцевой сети, заключающийся в том, что в момент фиксации падения рабочего тока в начале линии основного источника питания до значения, определяемого нагрузкой линии, подключенной после секционирующего выключателя, и отсутствии броска тока короткого замыкания (КЗ) начинают отсчет времени, равного времени выдержки включения выключателя пункта автоматического включения резерва. В момент окончания отсчета этого времени контролируют появление броска тока в начале линии резервного источника питания и если появляется бросок тока значением, определяемым отключенной нагрузкой линии основного источника питания, то устанавливают факт ложного отключения секционирующего выключателя в линии кольцевой сети [патент РФ №2378754, кл. Н02J 13/00, опубл. 10.10.2010, бюл. №1].
Недостатком известного способа является невозможность осуществления с его помощью контроля ложного или аварийного отключения и отказа автоматического повторного включения головного выключателя линии, питающей трансформаторную подстанцию, с определением вида короткого замыкания.
Задачей предлагаемого изобретения является расширение функциональных возможностей способа путем получения информации о ложном или аварийном отключении и отказе автоматического повторного включения головного выключателя линии, питающей трансформаторную подстанцию, с определением вида короткого замыкания.
Согласно предлагаемому способу с момента исчезновения напряжения на шинах трансформатора и отсутствии тока КЗ через него начинают отсчет времени, равный времени выдержки АПВ ГВ, и во все провода линии посылают зондирующие импульсы, измеряют время, за которое они дойдут до точек отражения, вычисляют расстояния до этих точек, сравнивают их между собой и с расстоянием до места установки ГВ и, если все вычисленные расстояния равны друг другу и больше, чем расстояние до ГВ, то делают вывод о ложном отключении ГВ, а если все вычисленные расстояния равны друг другу и меньше, чем расстояние до ГВ, или два вычисленных расстояния равны друг другу и меньше третьего, которое равно расстоянию до ГВ, то делают вывод об аварийном отключении ГВ, в момент окончания отсчитываемого времени контролируют появление напряжения на шинах подстанции и, если оно не появилось, то во все провода линии снова посылают зондирующие импульсы, измеряют время, за которое они дойдут до точек отражения, вычисляют расстояния до этих точек, сравнивают их между собой и с расстоянием до ГВ и, если все вычисленные расстояния равны друг другу и меньше, чем расстояние до ГВ, то делают вывод об отказе АПВ ГВ при устойчивом трехфазном КЗ, а если два вычисленных расстояния равны друг другу, но меньше третьего, которое равно расстоянию до ГВ, то делают вывод об отказе АПВ ГВ при устойчивом двухфазном КЗ.
Сущность предлагаемого изобретения поясняется чертежами, где:
на фиг.1 представлена структурная схема, содержащая элементы для реализации способа;
на фиг.2 - диаграммы сигналов на выходах элементов, показанных на фиг.1, при КЗ в точке 2 (см. фиг.1).
Схема (см. фиг.1) содержит головной выключатель 1 линии, питающей трансформаторную подстанцию, точку КЗ 2, трансформатор силовой 3, вводной выключатель 4 шин, линии 5, 6, 7, отходящие от шин подстанции, датчик тока короткого замыкания (ДТКЗ) 8, элемент НЕ 9, датчик напряжения (ДН) 10, элемент НЕ 11, элемент ПАМЯТЬ 12, элемент ЗАДЕРЖКА 13, элемент ОДНОВИБРАТОР 14, элемент И 15, элемент ПАМЯТЬ 16, элемент ОДНОВИБРАТОР 17, генератор зондирующих импульсов (ГЗИ) 18, приемник зондирующих импульсов (ПЗИ) 19, блок обработки информации (БОИ) 20, регистрирующее устройство (РУ) 21.
Диаграммы сигналов на выходах элементов, показанных на фиг.1, при КЗ в точке 2 имеют вид (см. фиг.2): 22 - на выходе элемента 8; 23 - на выходе элемента 9; 24 - на выходе элемента 10; 25 - на выходе элемента 11; 26 - на выходе элемента 12; 27 - на выходе элемента 13; 28 - на выходе элемента 14; 29 - на выходе элемента 15; 30 - на выходе элемента 16; 31 - на выходе элемента 17; 32 - на выходе элемента 18; 33 - на выходе элемента 19; 34 - на выходе элемента 20; 35 - на выходе элемента 21.
Кроме диаграмм выходных сигналов на фиг.2 также показаны: t1 - момент времени исчезновения напряжения на шинах трансформатора; t2 - момент времени окончания выдержки АПВ ГВ.
Способ осуществляется следующим образом.
В нормальном режиме работы подстанции на выходе ДН 10 есть сигнал (фиг.2, диагр.24), поэтому на выходе элемента НЕ 11 сигнала нет (фиг.2, диагр.25). На выходе ДТКЗ 8 сигнала нет (фиг.2, диагр.22), а на выходе элемента НЕ 9 есть сигнал (фиг.2, диагр.23), и он будет присутствовать на втором входе элемента И 15, а на его первом входе сигнала не будет, поэтому схема находится в режиме контроля.
При исчезновении напряжения на шинах трансформатора, вызванного отключением ГВ 1, на выходе ДН 10 сигнал исчезнет (фиг.2, диагр.24, момент времени t1), при этом на выходе элемента НЕ 11 появится сигнал (фиг.2, диагр.25). Этот сигнал поступит на вход элемента ПАМЯТЬ 16, запомнится им (фиг.2, диагр.30) и поступит на вход элемента ОДНОВИБРАТОР 17. Он произведет одно колебание (фиг.2, диагр.31), своим сигналом «сбросит» память с элемента 16 (фиг.2, диагр.30) и поступит на первый вход БОИ 20. Этот элемент пошлет сигнал (фиг.2, диагр.34) в ГЗИ 18, при этом с его выхода в провода линии пойдут зондирующие импульсы (фиг.2, диагр.32). Они, дойдя до точек отражения, вернутся обратно и поступят в ПЗИ 19, а с его выхода (фиг.2, диагр.33) поступят в БОИ 20. Этот элемент определит время, за которое зондирующие импульсы дошли до точек отражения, вычислит расстояния до этих точек и сравнит эти расстояния друг с другом и с расстоянием до ГВ 1. И если все вычисленные расстояния будут равны друг другу и больше, чем расстояние до ГВ 1, то на выходе БОИ 20 появится сигнал (фиг.2, диагр.34), который поступит в РУ 21, где появится информация о ложном отключении ГВ 1 (фиг.2, диагр.35). А если два вычисленных расстояния будут равны друг другу и меньше, чем третье, которое равно расстоянию до ГВ 1, или все вычисленные расстоянии равны друг другу и меньше, чем расстояние до ГВ 1, то с выхода БОИ 20 в РУ 21 пойдет сигнал, который обеспечит появление в нем информации об аварийном отключении ГВ 1 (фиг.2, диагр.35). Сигнал, поступивший в момент времени t1 с выхода элемента НЕ 11 (фиг.2, диагр.25) в элемент ПАМЯТЬ 12, запомнится им (фиг.2, диагр.26) и поступит на вход элемента ЗАДЕРЖКА 13. С выхода этого элемента сигнал появится через время выдержки АПВ ГВ 1 (фиг.2, диагр.27) и поступит на вход элемента ОДНОВИБРАТОР 14. Он произведет одно колебание (фиг.2, диагр.28), этим сигналом «сбросит» память с элемента 12 (фиг.2, диагр.26) и поступит на первый вход элемента И 15. В этот момент времени ГВ 1 должен включится, однако это не произойдет по какой-либо причине неисправности, поэтому сигнал с элемента НЕ 9 (фиг.2, диагр.23) не исчезнет и будет присутствовать на втором входе элемента И 15, поэтому он сработает, и его выходной сигнал (фиг.2, диагр.29) поступит на второй вход БОИ 20. При этом с этого элемента пойдет сигнал (фиг.2, диагр.34, момент времени t2) в ГЗИ 18, который снова пошлет зондирующие импульсы в провода линии (фиг.2, диагр.32). Импульсы, дойдя до точек отражения и вернувшись обратно, поступят в ПЗИ 19, а с его выхода (фиг.2, диагр.33) на вход БОИ 20. Этот элемент определит время прохождения зондирующими импульсами расстояние до точек отражения, вычислит расстояние до точек отражения и сравнит вычисленные расстояния между собой и с расстоянием до ГВ 1. И если все вычисленные расстояния равны друг другу и меньше, чем расстояние до ГВ 1, то с выхода БОИ 20 пойдет сигнал (фиг.2, диагр.34), который, поступив в РУ 21, обеспечит появление в нем информации об отказе АПВ ГВ 1 при устойчивом трехфазном КЗ (фиг.2, диагр.35). А если два вычисленных расстояния равны друг другу и меньше чем третье расстояние, которое равно расстоянию до ГВ 1, то с выхода БОИ 20 в РУ 21 пойдет сигнал (фиг.2, диагр.34), который обеспечит появление в нем информации об отказе АПВ ГВ 1 при устойчивом двухфазном КЗ.
Таким образом, предлагаемый способ позволяет получать информацию о ложном или аварийном отключении и отказе автоматического повторного включения головного выключателя линии, питающей трансформаторную подстанцию, с определением вида короткого замыкания.
Использование: в области электротехники. Технический результат - расширение функциональных возможностей. Согласно способу с момента исчезновения напряжения на шинах трансформатора и отсутствии тока КЗ через него начинают отсчет времени, равный времени выдержки АПВ ГВ, и во все провода линии посылают зондирующие импульсы, измеряют время, за которое они дойдут до точек отражения, вычисляют расстояния до этих точек, сравнивают их между собой и с расстоянием до места установки ГВ и, если все вычисленные расстояния равны друг другу и больше, чем расстояние до ГВ, то делают вывод о ложном отключении ГВ, а если равны друг другу и меньше, чем расстояние до ГВ, или два вычисленных расстояния равны друг другу и меньше третьего, которое равно расстоянию до ГВ, то делают вывод об аварийном отключении ГВ, в момент окончания отсчитываемого времени контролируют появление напряжения на шинах подстанции и, если оно не появилось, то во все провода линии снова посылают зондирующие импульсы, измеряют время, за которое они дойдут до точек отражения, вычисляют расстояния до этих точек, сравнивают их между собой и с расстоянием до ГВ и, если все вычисленные расстояния равны друг другу и меньше, чем расстояние до ГВ, то делают вывод об отказе АПВ ГВ при устойчивом трехфазном КЗ, а если два вычисленных расстояния равны друг другу, но меньше третьего, которое равно расстоянию до ГВ, то делают вывод об отказе АПВ ГВ при устойчивом двухфазном КЗ. 2 ил.
Способ контроля ложного или аварийного отключения и отказа автоматического повторного включения (АПВ) головного выключателя (ГВ) линии, питающей трансформаторную подстанцию, с определением вида короткого замыкания (КЗ), заключающийся в фиксации бросков токов КЗ и в измерении времени между ними, отличающийся тем, что с момента исчезновения напряжения на шинах трансформатора и отсутствии тока КЗ через него начинают отсчет времени, равный времени выдержки АПВ ГВ, и во все провода линии посылают зондирующие импульсы, измеряют время, за которое они дойдут до точек отражения, вычисляют расстояния до этих точек, сравнивают их между собой и с расстоянием до места установки ГВ и, если все вычисленные расстояния равны друг другу и больше, чем расстояние до ГВ, то делают вывод о ложном отключении ГВ, а если все вычисленные расстояния равны друг другу и меньше, чем расстояние до ГВ, или два вычисленных расстояния равны друг другу и меньше третьего, которое равно расстоянию до ГВ, то делают вывод об аварийном отключении ГВ, в момент окончания отсчитываемого времени контролируют появление напряжения на шинах подстанции и, если оно не появилось, то во все провода линии снова посылают зондирующие импульсы, измеряют время, за которое они дойдут до точек отражения, вычисляют расстояния до этих точек, сравнивают их между собой и с расстоянием до ГВ и, если все вычисленные расстояния равны друг другу и меньше, чем расстояние до ГВ, то делают вывод об отказе АПВ ГВ при устойчивом трехфазном КЗ, а если два вычисленных расстояния равны друг другу, но меньше третьего, которое равно расстоянию до ГВ, то делают вывод об отказе АПВ ГВ при устойчивом двухфазном КЗ.
СПОСОБ КОНТРОЛЯ ЛОЖНОГО ОТКЛЮЧЕНИЯ СЕКЦИОНИРУЮЩЕГО ВЫКЛЮЧАТЕЛЯ В ЛИНИИ КОЛЬЦЕВОЙ СЕТИ | 2008 |
|
RU2378754C1 |
СПОСОБ КОНТРОЛЯ НЕУСПЕШНОГО ВКЛЮЧЕНИЯ ПУНКТА АВТОМАТИЧЕСКОГО ВКЛЮЧЕНИЯ РЕЗЕРВА НА КОРОТКОЕ ЗАМЫКАНИЕ | 2000 |
|
RU2169979C1 |
Машина для посадки корнеплодов | 1988 |
|
SU1523080A1 |
Генератор пачек случайных импульсов | 1975 |
|
SU517888A1 |
Авторы
Даты
2013-12-20—Публикация
2012-04-24—Подача