ПОДВОДНАЯ ЭКСПЛУАТАЦИОННАЯ ПЛАТФОРМА ДЛЯ ДОБЫЧИ НЕФТИ И ГАЗА Российский патент 2014 года по МПК E21B43/17 

Описание патента на изобретение RU2503800C2

Изобретение относится к освоению подводных месторождений полезных ископаемых, преимущественно жидких и газообразных, а именно, к сооружению технологических комплексов, предназначенных для обустройства морских глубоководных нефтегазовых месторождений и работающих в экстремальных условиях и может быть использовано на глубоководных акваториях, на которые возможен приход айсбергов или плавучих ледовых полей или же замерзающих на длительный срок, и где открыты промышленные запасы углеводородов, освоение которых в настоящее время может осуществляться (например, на Штокманском газоконденсатном месторождении) преимущественно путем создания весьма дорогих по стоимости и сложности их создания и эксплуатации подводных добычных комплексов (далее ПДК).

Известен морской технологический комплекс, предназначенный для освоения глубоководных нефтегазовых месторождений, включающий ряд морских стационарных платформ, подводные донные комплексы, подводные внутрипромысловые и магистральные трубопроводы, емкости для хранения продукции скважин и отгрузочные установки, причем, по крайней мере, одна из платформ выполнена в подводном исполнении и закреплена ко дну опорным блоком, верхний габарит которого расположен ниже уровня воды на величину наибольшего габарита прохождения подводной части айсберга (патент РФ 2238365, по кл. Е02В 17/00 от 25.07.2003 г.).

Недостатком этого морского технологического комплекса является необходимость производства сложных и дорогостоящих работ по отсоединению и отводу в безопасную и защищенную ото льда и айсбергов зону верхнего подвижного модуля с временной остановкой эксплуатации морской платформы с соответствующими экономическими потерями.

Наиболее близким по технической сути и достигаемому результату является морской технологический комплекс, включающий подводные внутрипромысловые и магистральные трубопроводы, емкости для хранения продукции скважин и отгрузочные установки, при этом, часть платформ выполнена в подводном и ледозащитном исполнении с закреплением ко дну, например, опорным блоком, верхний габарит которого расположен ниже уровня воды на величину наибольшего габарита прохождения подводной части айсберга, а опорные блоки платформ в подводном исполнении выполняют с блок-модулями, служащими для размещения персонала в подводных воздушных камерах, предназначенных для осуществления периодических работ по техническому обслуживанию, ремонту и обследованию конструкций и технологического оборудования, автоматизированных систем управления и контроля, при этом блок-модуль энергетической платформы выполнен с автоматизированной атомной электростанцией и предназначен для энергетического обеспечения технологических подводных платформ, а блоки-модули технологических платформ выполнены с сепарационными установками, с компрессорным и насосным оборудованием, с автоматизированной системой управления и с водолазным и подводно-техническим оборудованием, предназначенным для первичной подготовки продукции скважин к транспортировке до центральной технологической платформы и/или до морского отгрузочного причала с емкостью для хранения продукции скважин (патент РФ 2383683, по кл. Е02В 17/00 от 30.09.2008 г.).

Недостатком подобных комплексов является необходимость их защиты от ледовых воздействий, а также не исключена вероятность их столкновения с айсбергами, что приводит к существенному наращиванию их металлоемкости и материалоемкости, а с возрастанием глубин эти нефтегазовые месторождения вряд ли могут быть освоены традиционным образом, в особенности, когда к тому же возрастает их удаленность от берега.

Также недостатком этого комплекса является жесткая его фиксация на заранее рассчитанной в соответствии со статистическими данными глубине от спокойной поверхности моря, (надежность которых по своей природе не может быть абсолютно точной).

Кроме того, по завершению разработки месторождения утилизация стационарной платформы (тем более в подводном исполнении) представляет собой определенные трудности и затраты на ее демонтаж и могут оказаться весьма высокими (причем, как известно затраты на утилизацию крупных морских стационарных сооружений нефтегазового профиля в Мексиканском заливе и на Северном море всего лишь в 2-5 раз ниже, чем затраты, понесенные в свое время на их создание).

Целью настоящего изобретения является создание подводного плавучего средства, позволяющего при встрече с подводной частью айсберга плавно и мягко его огибать и возвращаться в исходное положение после его прохождения с одновременным обеспечением расположения скважин внутри объекта и повышением надежности строительства и эксплуатации ПЭП.

Поставленная цель достигается тем, что в подводной эксплуатационной платформе (далее ПЭП) для морской добычи нефти и газа, включающей опорное основание погружного типа (площадку палубного типа, под которой устанавливаются балластные емкости предназначенные для погружения на заданную глубину, а также для удержания всего комплекса в горизонтальном положении), на котором секторально (с целью большей компактности и придания овальности всей конфигурации ПЭП) устанавливают с помощью фиксирующих соединений функциональные изолированные (герметичные) блок-модули, служащие для размещения персонала и для осуществления периодических работ по техническому обслуживанию, ремонту и обследованию конструкций и технологического оборудования, автоматизированных систем управления и контроля, при этом энергетический блок-модуль платформы выполнен в виде автоматизированной атомной электростанции, предназначенной для энергетического обеспечения, а блоки-модули выполнены с компрессорным и насосным оборудованием, с автоматизированной системой управления, с водолазным и подводно-техническим оборудованием, которые предназначены для первичной подготовки продукции скважин к транспортировке до центральной технологической платформы и/или до морского отгрузочного причала с емкостью для хранения продукции скважин, причем вся платформа в сборе выполнена близкой к форме круга/многоугольника, в центре которого расположен устьевой модуль со скважинами с равномерно установленными между собой устьями скважин.

Кроме этого, поставленная цель достигается также тем, что платформа выполнена замкнутой (предпочтительно овальной) формы и состоит из нескольких блок-модулей, соединенных между собой и с двумя круговыми коридорами (внутренним и внешним), предназначенными для сообщения между блок-модулями, а также для подъема/спуска персонала с помощью, например, мобильных герметичных капсул.

Кроме этого, поставленная цель достигается также тем, что все блок-модули выполнены герметичными (с автономной системой погружения - с целью более свободного перемещения в вертикальных направлениях) и изолированными друг от друга (но сообщающимися с обоими круговыми коридорами: внутренним и внешним) и установлены с возможностью при необходимости извлечения на поверхность для ремонта или замены.

Кроме этого, поставленная цель достигается также тем, что все модули выполнены с собственной балластной системой, предназначенной для погружения и всплытия.

Кроме этого, поставленная цель достигается также тем, что платформа снабжена вертикальной выдвижной трубой для подачи/вытяжки атмосферного воздуха и снабжена в верхней ее части модулем плавучести, выполненным, например, в виде полого тора, опоясывающего выдвижную трубу.

Кроме этого, поставленная цель достигается также тем, что вертикальная выдвижная труба снабжена продольной перегородкой для обеспечения приточно-вытяжной вентиляции (в этой трубе возможна также установка лифта для перемещения персонала).

Кроме этого, поставленная цель также достигается тем, что платформа снабжена подъемным механизмом, предназначенным для ее опускания и подъема на безопасную глубину.

Кроме этого, поставленная цель достигается тем, что все скважины защищены индивидуальными водоотделяющими колоннами, на концах которых установлены шарнирные устройства трубчатого типа, предназначенные для обеспечения отклонения всех устьев скважин и возврата в исходное положение после прохождения айсберга.

Предложенное техническое решение поясняется чертежами, где:

на фиг.1 изображен общий вид подводной эксплуатационной платформы;

на фиг.2 - вид сверху на фиг.1;

на фиг.3 - схема процесса бурения скважин с расположением устьев непосредственно в подводном объекте.

1 - подводная эксплуатационная платформа (ПЭП);

2 - опорное основание;

3 - опорная площадка;

4 - натяжные связи (опоры);

5 - морское дно;

6 - устьевой модуль;

7 - устье скважины;

8 - блок-модуль;

9 - круговой внутренний коридор;

10 - круговой внешний коридор;

11 - выходная шлюзовая камера;

12 - мобильная герметичная капсула;

13 - подводная опорная конструкция;

14 - модуль плавучести подводной опорной конструкции;

15 - индивидуальная водоотделяющая колонна;

16 - шарнирное устройство;

17 - вертикальная выдвижная труба;

18 - модуль плавучести вертикальной выдвижной трубы.

Подводная эксплуатационная платформа (ПЭП) 1 (см. Фиг.1) для морской добычи нефти и газа состоит из опорного основания 2 погружного типа, размещенного на опорной площадке 3 и натяжных «связей» (опор) 4. Опоры 4 осуществляют крепление опорного основания 2 и опорной площадки 3 к морскому дну 5 любым известным способом (например, системой якорей, установленных на дне заранее). Опорное основание 2 в плане (см. Фиг.2) представляет собой круг и/или многоугольник, в центре которого расположен устьевой модуль 6 с устьями скважин 7. Устья скважин 7 расставлены на равных между собой расстояниях. Вокруг устьевого модуля 6 по периметру секторально расположены блок-модули 8, соединенные между собой для сообщения двумя круговыми коридорами (внутренним и внешним) 9 и 10. Круговой внутренний коридор 9 примыкает к устьевому модулю 6. Круговой внешний коридор 10 проходит по большому радиусу от центра устьевого модуля вокруг всех блок-модулей 8. В обоих коридорах 9, 10 установлены по сторонам выходные шлюзовые камеры 11, снабженные мобильными герметичными капсулами 12 для перемещения персонала и оборудования из ПЭП. По обоим круговым коридорам 9, 10 проложены все необходимые технологические трубопроводы, линии связи, управления и т.п. Количество блок-модулей 8 на ПЭП 1 определяется из условий эксплуатации для размещения энергетического, технологического модулей, модуля системы кондиционирования и очистки воздуха, насосного, компрессорного, вспомогательного, жилого модулей и других. Блок-модули 8 выполнены герметичными и изолированными друг от друга, и служат для размещения персонала и оборудования. При этом каждый модуль 8 обладает определенной автономностью управления и снабжен собственной балластной системой, предназначенной для вертикального перемещения вплоть до всплытия на поверхность. Опорная площадка 3 включает подводную опорную конструкцию 13, обладающую собственным избыточным модулем плавучести 14 выполненным в виде тора, секционированного танками с целью удержания всего комплекса в горизонтальном положении, поскольку все блок-модули могут существенно различаться по своей массе. Натяжные «связи» (опоры) 4 могут быть выполнены вертикальными и/или наклонными в виде многозвенных цепей и/или канатов и/или телескопических элементов, например трубчатых. Все скважины 7 защищены индивидуальными водоотделяющими колоннами 15, на концах которых установлены шарнирные устройства трубчатого типа 16. Подводная эксплуатационная платформа (ПЭП) дополнительно может быть оснащена вертикальной выдвижной трубой 17, снабженной в верхней части модулем плавучести 18. Модуль плавучести 18 выполнен в виде, например, полого тора, опоясывающего выдвижную трубу.

На место установки ПЭП сначала буксируют опорную площадку 3. Благодаря собственному избыточному модулю плавучести 14 эту площадку 3 погружают на расчетную глубину и крепят натяжными опорами 4 на морском дне 5. Далее в зависимости от условий при помощи кранового судна или автономно спускают и устанавливают на опорную площадку 3 опорное основание 2. Секционированный модуль плавучести подводной опорной конструкции 14 способствует сохранению равновесия (балластировки) в процессе замены и/или отсутствия одного или нескольких блок-модулей 8.

Бурение скважин производят:

- через представленную (заявленную) в данной заявке ПЭП 1 при помощи, например, полупогружной буровой установки/или (когда будет освоена технология подводного бурения) через один или несколько блок-модулей 8, которые будут укомплектованы всем необходимым буровым оборудованием.

При этом оканчивание (фонтанная арматура, уплотнение устья скважин и т.п.) располагается в устьевом модуле 6.

После завершения бурения всех скважин:

- полупогружная буровая установка отсоединяется от ПЭП, уходит по назначению на следующее месторождение/один/несколько блок-модулей 8, который(ми) был укомплектован необходимым буровым оборудованием, отсоединяют и уводят в док, а вместо него приходит другой блок-модуль с необходимым эксплуатационным оборудованием или уравновешивается модулем плавучести подводной опорной конструкции 14. После этого заявленный объект ПЭП начинает функционировать самостоятельно. При прохождении айсберга шарнирные устройства 16, установленные на индивидуальных водоотделяющих колоннах 15, обеспечивают отклонение всех устьев скважин и возврат в исходное положение. Вертикальная выдвижная труба 17 предназначена для подачи и/или вытяжки атмосферного воздуха, а также в качестве лифта для перемещения персонала. Предполагается, что ПЭП будет содержать все системы: кондиционирования и очистки воздуха, освещения, теплоснабжения, санитарно-бытового обеспечения аналогичны соответствующим системам атомной подводной лодки (АЛЛ), например, проект 941 («Акула»).

Итак, после завершения бурения (фиг.3) всех скважин полупогружная буровая установка отсоединяется от подводной платформы, уходит по назначению на последующие месторождения, и наш объект (ПЭП) начинает функционировать самостоятельно (фиг.1), т.е. наступает длительный этап эксплуатации (т.е. разработки месторождения). Необходимо еще раз отметить, что все блок-модули будут присоединяться к общему круговому коридорному отсеку, с помощью которого будет обеспечена возможность перемещения персонала в необходимые помещения.

Основной целью заявленного технического решения является создание такого подводного плавучего средства, которое бы позволило располагать скважины внутри объекта, в отличие от ставшей традиционной на больших глубинах устанавливать скважины на морском дне, которые практически недоступны водолазам, вследствие чего подводные устья скважин оснащают дорогой управляемой аппаратурой, далеко не всегда отличающейся надежностью и ремонтопригодностью (особенно в подводных условиях). В предлагаемом объекте фонтанная арматура всех устьев скважин, как и любое оборудование, установленное в блок-модулях, в любое время доступны для профилактики и проведения ремонта.

Реализация предложенного технического решения позволит повысить надежность строительства и эксплуатации подводных эксплуатационных платформ с одновременным обеспечением расположения скважин внутри объекта и обеспечить при встрече с подводной частью айсберга плавно и мягко его огибать и возвращаться в исходное положение после его прохождения.

Похожие патенты RU2503800C2

название год авторы номер документа
СПОСОБ ОБУСТРОЙСТВА МОРСКИХ ГЛУБОКОВОДНЫХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ 2013
  • Островский Александр Георгиевич
  • Швоев Дмитрий Алексеевич
  • Чернявец Владимир Васильевич
  • Илюхин Виктор Николаевич
  • Бродский Павел Григорьевич
  • Леньков Валерий Павлович
RU2547161C2
УНИВЕРСАЛЬНОЕ ПОДВОДНОЕ СООРУЖЕНИЕ "АПЕЛЬСИН" ДЛЯ БУРЕНИЯ СКВАЖИН НА НЕФТЬ/ГАЗ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ 2012
  • Гусейнов Чингиз Саибович
  • Иванец Виктор Константинович
  • Швец Сергей Алексеевич
  • Мирзоев Фуад Дилижан Оглы
  • Морев Юрий Анатольевич
  • Громова Галина Викторовна
RU2515657C1
СПОСОБ ОБУСТРОЙСТВА МОРСКИХ ГЛУБОКОВОДНЫХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ 2008
  • Романчишин Георгий Алексеевич
  • Гусейнов Чингис Саибович
  • Ершов Борис Ильич
  • Орлов Игорь Борисович
  • Кузнецов Юрий Николаевич
  • Коваленко Николай Афанасьевич
  • Вовк Владимир Степанович
  • Юрчак Николай Григорьевич
  • Басарыгин Михаил Юрьевич
RU2383683C1
ПОДВОДНАЯ ПЛАТФОРМА ДЛЯ БУРЕНИЯ И ДОБЫЧИ ЖИДКИХ И ГАЗООБРАЗНЫХ ПОЛЕЗНЫХ ИСКОПАЕМЫХ 1992
  • Кузнецов Б.А.
  • Пузырев А.М.
  • Палий О.М.
  • Пашин В.М.
  • Спиро В.Е.
RU2045618C1
СПОСОБ ОБУСТРОЙСТВА МОРСКИХ ТЕРМИНАЛОВ ПО ДОБЫЧЕ ПОДВОДНЫХ ЗАЛЕЖЕЙ УГЛЕВОДОРОДОВ 2014
  • Левченко Дмитрий Герасимович
  • Зубко Юрий Николаевич
  • Рогинский Константин Александрович
  • Ильинский Дмитрий Анатольевич
  • Леденев Виктор Валентинович
  • Чернявец Владимир Васильевич
  • Зеньков Андрей Федорович
  • Бродский Павел Григорьевич
RU2567563C1
ПОДВОДНОЕ УСТЬЕВОЕ ОБОРУДОВАНИЕ ДЛЯ ЭКСПЛУАТАЦИИ КУСТА СКВАЖИН 1991
  • Лещев А.Г.
  • Эделев О.К.
  • Шустиков Ю.К.
  • Адамянц П.П.
  • Уманский С.И.
  • Ярославский Ф.Л.
RU2017933C1
СПОСОБ РАЗРАБОТКИ УГЛЕВОДОРОДНЫХ МЕСТОРОЖДЕНИЙ АРКТИЧЕСКОГО ШЕЛЬФА И ТЕХНИЧЕСКИЕ РЕШЕНИЯ ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 2013
  • Герасимов Евгений Михайлович
RU2529683C1
КОМПЛЕКС ДЛЯ РАЗРАБОТКИ ПОДВОДНЫХ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ 2006
  • Кузнецов Геннадий Петрович
RU2349489C2
ПОДВОДНАЯ БУРОВАЯ УСТАНОВКА ДЛЯ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ УГЛЕВОДОРОДОВ (НЕФТИ И ГАЗА) В АРКТИЧЕСКОМ ШЕЛЬФЕ 2012
  • Гинтовт Андрей Римович
  • Спасский Игорь Дмитриевич
  • Свидинский Андрей Владимирович
  • Трусов Владимир Георгиевич
RU2507382C1
СПОСОБ СООРУЖЕНИЯ И ТЕХНОЛОГИЧЕСКИЙ КОМПЛЕКС ПОДВОДНОЙ ДОБЫЧИ ПОЛЕЗНЫХ ИСКОПАЕМЫХ 1998
  • Седых А.Д.
  • Никитин Б.А.
  • Шалабанов А.С.
  • Кочурков М.И.
  • Рабкин В.М.
  • Вовк В.С.
  • Кваша Н.И.
  • Лавковский С.А.
  • Эделев О.К.
  • Овчинников В.Ф.
  • Ловчев С.В.
  • Хрусталев Н.Н.
  • Судницын В.Н.
  • Елисеенко И.Н.
  • Лямин А.В.
RU2140516C1

Иллюстрации к изобретению RU 2 503 800 C2

Реферат патента 2014 года ПОДВОДНАЯ ЭКСПЛУАТАЦИОННАЯ ПЛАТФОРМА ДЛЯ ДОБЫЧИ НЕФТИ И ГАЗА

Изобретение относится к сооружению технологических комплексов, предназначенных для обустройства морских глубоководных нефтегазовых месторождений, работающих в экстремальных условиях, и может быть применено на глубоководных акваториях, на которые возможен приход айсбергов или плавучих ледовых полей. Платформа содержит опорное основание погружного типа, при этом энергетический блок-модуль платформы выполнен в виде автоматизированной атомной электростанции, предназначенной для энергетического обеспечения, а блоки-модули выполнены с компрессорным и насосным оборудованием, с автоматизированной системой управления, с водолазным и подводно-техническим оборудованием, которые предназначены для первичной подготовки продукции скважин к транспортировке до центральной технологической платформы и/или до морского отгрузочного причала с емкостью для хранения продукции скважин. Причем вся платформа в сборе выполнена близкой к форме круга и/или многоугольника, в центре которого расположен устьевой модуль со скважинами с равномерно установленными между собой устьями скважин. Технический результат заключается в повышении надежности строительства и эксплуатации подводных эксплуатационных платформ с одновременным обеспечением расположения скважин внутри объекта. 7 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 503 800 C2

1. Подводная эксплуатационная платформа для морской добычи нефти и газа, состоящая из опорного основания погружного типа, размещенного на опорной площадке, и натяжных опор; опорное основание в плане представляет собой круг и/или многоугольник, в центре которого расположен устьевой модуль с устьями скважин; вокруг устьевого модуля по периметру секторально расположены блок-модули, соединенные между собой для сообщения двумя, внутренним и внешним, круговыми коридорами; в коридорах установлены по сторонам выходные шлюзовые камеры, снабженные мобильными герметичными капсулами для перемещения персонала и оборудования; блок-модули выполнены герметичными и изолированными друг от друга и служат для размещения персонала и для осуществления периодических работ по техническому обслуживанию, ремонту и обследованию конструкций и технологического оборудования, автоматизированных систем управления и контроля, при этом энергетический блок-модуль платформы выполнен в виде автоматизированной атомной электростанции, предназначенной для энергетического обеспечения, а блоки-модули выполнены с компрессионным и насосным оборудованием, с автоматизированной системой управления, с водолазным и подводно-техническим оборудованием, которые предназначены для первичной подготовки продукции скважин к транспортировке до центральной технологической платформы и/или до морского отгрузочного причала с емкостью для хранения продукции скважин; каждый блок-модуль обладает автономностью управления и снабжен собственной балластной системой, предназначенной для вертикального перемещения вплоть до всплытия на поверхность; опорная площадка включает подводную опорную конструкцию, обладающую собственным избыточным модулем плавучести, выполненным в виде тора.

2. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что устья скважин расставлены на равных между собой расстояниях, при этом все скважины защищены индивидуальными водоотделяющими колоннами, на концах которых установлены шарнирные устройства трубчатого типа.

3. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что круговой внутренний коридор примыкает к устьевому модулю, а круговой внешний коридор проходит по большому радиусу от центра устьевого модуля вокруг всех блок-модулей.

4. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что по обоим круговым коридорам проложены все необходимые технологические трубопроводы, линии связи, управления.

5. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что натяжные опоры могут быть выполнены вертикальными и/или наклонными в виде многозвенных цепей, и/или канатов, и/или телескопических элементов.

6. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что дополнительно может быть оснащена вертикальной выдвижной трубой, снабженной в верхней части модулем плавучести, при этом модуль плавучести выполнен в виде полого тора, опоясывающего выдвижную трубу.

7. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что она снабжена подъемным механизмом, предназначенным при необходимости для ее опускания и подъема на безопасную глубину.

8. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что все скважины защищены индивидуальными водоотделяющими колоннами, на концах которых установлены шарнирные устройства трубчатого типа, предназначенные для обеспечения отклонения всех устьев скважин и возврата в исходное положение после прохождения айсберга.

Документы, цитированные в отчете о поиске Патент 2014 года RU2503800C2

СПОСОБ ОБУСТРОЙСТВА МОРСКИХ ГЛУБОКОВОДНЫХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ 2008
  • Романчишин Георгий Алексеевич
  • Гусейнов Чингис Саибович
  • Ершов Борис Ильич
  • Орлов Игорь Борисович
  • Кузнецов Юрий Николаевич
  • Коваленко Николай Афанасьевич
  • Вовк Владимир Степанович
  • Юрчак Николай Григорьевич
  • Басарыгин Михаил Юрьевич
RU2383683C1
Способ спуска и посадки трубной подвески на подводное устье скважины 1987
  • Кроль Владимир Семенович
  • Керимов Исрафил Мамед Оглы
  • Курбанов Афар Осман Оглы
  • Абасов Салех Мирдамет Оглы
  • Селимханов Орхан Кудрат Оглы
SU1434076A1
СПОСОБ ПРОИЗВОДСТВА НЕФТЕГАЗОПРОМЫСЛОВЫХ РАБОТ И ГЛУБОКОВОДНАЯ ПЛАТФОРМА ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 1997
  • Рылов И.И.
  • Васильев С.А.
  • Рылов И.И.
  • Красулина А.И.
RU2140527C1
СПОСОБ СООРУЖЕНИЯ ТЕХНОЛОГИЧЕСКОЙ ПЛАТФОРМЫ 2006
  • Мищевич Виктор Ильич
  • Мищевич Сергей Викторович
  • Стаценко Вячеслав Васильевич
RU2307894C1
САМОХОДНЫЙ НАДВОДНО-ПОДВОДНЫЙ ОСТРОВ 2009
  • Монахов Валерий Павлович
RU2399549C1
US 3504741 A, 07.04.1970
US 6371695 B1, 16.04.2002.

RU 2 503 800 C2

Авторы

Гусейнов Чингис Саибович

Иванец Виктор Константинович

Мирзоев Фуад Дилижанович

Морев Юрий Анатольевич

Громова Галина Викторовна

Даты

2014-01-10Публикация

2011-07-13Подача