УСТРОЙСТВО ДЛЯ ВИЗУАЛИЗАЦИИ АКУСТИЧЕСКОГО ПОЛЯ В ОПТИЧЕСКИ ОТРАЖАЮЩЕЙ УПРУГОЙ ПОВЕРХНОСТИ Российский патент 2014 года по МПК G01N29/06 G01H9/00 

Описание патента на изобретение RU2505806C2

Изобретение относится к неразрушающему контролю материалов методом визуализации акустического поля.

Известно устройство преобразования акустического поля в оптическое изображение. (См. патент США №3716826 по кл. (G01N 29/00 за 1973 год и патент США №3594717 по кл. G01N 29/00 за 1971 год).

Из известных устройств преобразования акустического поля в оптическое изображение наиболее близким по технической сущности является устройство, включающее интерферометр Тваймана-Грина, состоящий из источника когерентного оптического излучения (лазера), делителя и линзы, включенной в первое плечо интерферометра, двух линз, пьезоэлектрического ретрорефлектора, соединенного с генератором пилообразного напряжения, и зеркала - в другом его плече, включающее также генератор ультразвуковой частоты, соединенный последовательно с излучателем ультразвуковых колебаний, находящийся в емкости с водой, в которой также находятся исследуемый образец и собирающая акустическая линза, при этом одна из стенок емкости включает тонкую мембрану с отражающим свет покрытием, которая является отражающим зеркалом предметного пучка в первом плече интерферометра, включающее также последовательно соединенные диссектор (передающую телевизионную трубку с фотоэлектронным умножителем) и усилитель электрического сигнала, выход которого соединен со входами узкополосных фильтров, из которых выход первого соединен со входом демодулятора, а выход второго -с управляющим входом демодулятора, выход демодулятора подключен ко входу оптического дисплея (патент США №3716826, 1973).

Данное устройство обладает рядом существенных недостатков:

невысокая разрешающая способность, сложность расшифровки интер-ферограмм, низкая помехозащищенность, вызванная высокой чувствительностью к вибрациям, сравнимым по амплитуде с длиной волны ультразвука.

Невысокая разрешающая способность обусловлена устройством диссектора, имеющим фотоэлектронный умножитель. Проектирование оптического изображения на фоточувствительную поверхность преобразователя свет-сигнал сопровождается диффузным рассеянием света в план-шайбе передающей трубки, в толще фотослоя, в подложке матрицы фотоэлементов, а также зеркальным отражением света от различных поверхностей раздела. Все эти конструктивные особенности искажают первоначальное амплитудно-фазовое распределение, делая его к тому же и дискретным. Кроме того, в общем случае распределение плотности тока заряда мишени трубки не совпадает с распределением плотности тока первичных носителей. Помимо этого, использование емкости с водой не обеспечивает минимальных переотражений звуковых волн на границах сред воды и образца, так как ρ1C1≠ρ2с2, где ρ1с1 - соответственно, плотность и скорость звука в воде; ρ2с2 - соответственно, плотность и скорость звука в образце, что также вызывает дополнительные искажения амплитудно-фазового распределения акустического поля.

Ввиду того, что оптический дисплей воспроизводит интерференционную картину, то возникает необходимость ее расшифровки, что требует высокой подготовленности обслуживающего персонала, его опыта, затрат времени, при этом не исключены ошибки в принятии решения.

Низкая помехозащищенность устройства обусловлена тем, что увеличенная продолжительность контроля образца требует надежной виброразвязки устройства. Абсолютной виброразвязки добиться невозможно, существенное же улучшение этой характеристики связано с очень большими затратами.

Задача изобретения - повышение разрешающей способности устройства, увеличение его помехозащищенности и повышение простоты контроля.

В результате использования предлагаемого изобретения увеличивается разрешающая способность и помехозащищенность устройства.

Технический результат достигается тем, что в предлагаемом устройстве для визуализации акустического поля в оптически отражающей упругой поверхности, включающем последовательно соединенные генератор ультразвуковой частоты и пьезокерамический излучатель, находящийся в емкости, в которой также размещены на одной линии с излучателем исследуемый образец и собирающая акустическая линза, а стенка емкости в направлении образца от излучателя выполнена оптически отражающей, включающее также источник когерентного оптического излучения (лазер), делитель, первую и вторую линзы, емкость выполнена герметично и наполнена инертным газом под давлением, обеспечивающим минимум переотражений на границах сред образца и газа, при этом оптически отражающая поверхность выполнена из двух оптически прозрачных тонких и прочных стенок, между которыми тонким слоем находится ртуть, а лазер при записи звукового изображения работает в ждущем импульсном режиме, а также оно снабжено голографической фотопластиной, причем один из расщепленных делителем пучков лазера коллимируется первой линзой и далее, отражаясь от оптически отражающей упругой поверхности емкости, падает на топографическую пластину, а второй пучок коллимируется второй линзой и падает на ту же поверхность голографической пластины, формируя топографическую интерферограмму.

Сущность изобретения поясняется чертежом, на которой приведена общая схема предлагаемого устройства.

Устройство содержит генератор ультразвуковой частоты 1, пьезокерамический излучатель 2, исследуемый образец 3, собирающую акустическую линзу 4, оптически отражающую поверхность 5, лазер 6, делитель 7, первую линзу 8, вторую линзу 9, герметичную емкость 10, топографическую фотопластину 11.

Устройство работает следующим образом.

Акустические колебания, формируемые с помощью генератора ультразвуковой частоты 1 и пьезокерамического излучателя 2, распространяясь в емкости 10, наполненной инертным газом под определенным давлением, проходят через исследуемый образец 3, приобретают в каждом направлении прохождения образца 3 свой фазовый набег и амплитудное затухание, которые зависят от размеров, форм и видов структурных неоднородностей или дефектов материала образца 3. В связи с этим фронт акустической волны, претерпевая амплитудно-фазовые искажения, несет как бы слепок внутреннего строения исследуемого образца 3. Точность и четкость такого слепка зависят от длины волны ультразвука. Контрастность такого звукового изображения зависит от коэффициента отражения акустических колебаний на границах двух сред. Чтобы добиться минимального коэффициента отражения, необходимо плотность среды, окружающей исследуемый образец довести до такой величины, чтобы в выражении для коэффициента отражения

числитель стремился в идеале к нулю, то есть произведение плотности инертного газа в емкости 10 на скорость ультразвука в нем p1C1 должна быть равна произведению плотности материала исследуемого образца 3 на скорость звука в нем ρ2с2. Этого можно добиться подбором газа и его давления в емкости 10.

Спроецированное акустической собирающей линзой 4 на оптически отражающую поверхность 5 звуковое изображение модулирует оптическое поле, которое создается голографической установкой, работающей следующим образом. Луч лазера 6 расщепляется на два взаимно перпендикулярных пучка света с помощью делителя 7. Один из расщепленных пучков коллимируется линзой 8 и падает на внешнюю оптически отражающую поверхность 5. Этот пучок света полностью освещает поверхность 5, и колебания деформируемой поверхности раздела, вызванные звуковым полем, приводят к фазовой модуляции света, формируя объектный пучок. Отразившись от поверхности 5, этот пучок попадает на голографическую пластину 11. Другой расщепленный делителем 7 опорный пучок света, коллимированный линзой 9, также попадает на голографическую пластину 11. В плоскости фотопластины 11 объектный пучок и опорный пучок света формируют интерферограмму, которая запоминается фотопластиной 11. При этом следует отметить, что при запоминании изображения лазер 6 работает в ждущем импульсном режиме, чтобы обеспечить наилучшую четкость звукового изображения, которое, непрерывно в течение периода , где λ, - длина ультразвуковой волны в с конкретном материале, с - скорость звука в этом материале) изменяет свою фазу, а следовательно, и амплитуду в каждой точке упругой поверхности 5.

Оптическая картина звукового изображения воспроизводится посредством освещения голографической фотопластины 11 опорным пучком лазера 6 под тем же самым углом, при этом лазер 6 работает в непрерывном режиме излучения.

Признаков, сходных с заявляемыми, в существующих технических решениях не обнаружено, следовательно, предлагаемое изобретение обладает существенными отличиями.

Предлагаемое устройство может быть реализовано с использованием генератора ультразвуковой частоты - генератора синусоидального напряжения, перестраиваемого по частоте в диапазоне, интересующем исследование, пьезокерамического излучателя на пьезокерамике типа цирконат - титанат свинца (ЦТС), формы и размеры которой удовлетворяют качеству исследования, лазера с рабочей длиной волны, соответсвующей диапазону чувствительности фотопластины.

Таким образом, предлагаемое техническое решение позволяет повысить разрешающую способность устройства, увеличить его помехозащищенность и повысить простоту контроля.

Похожие патенты RU2505806C2

название год авторы номер документа
СПОСОБ И СИСТЕМА ГОЛОГРАФИЧЕСКОЙ ЗАПИСИ И ВОСПРОИЗВЕДЕНИЯ ЗВУКОВОЙ ИНФОРМАЦИИ 2000
  • Чубаров С.Б.
RU2160471C1
ГОЛОГРАФИЧЕСКИЙ ИНТЕРФЕРОМЕТР ДЛЯ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ ПЛОСКОЙ ПОВЕРХНОСТИ ЭЛЕМЕНТОВ ТВЕРДОТЕЛЬНОЙ ЭЛЕКТРОНИКИ 2009
  • Борыняк Леонид Александрович
  • Непочатов Юрий Кондратьевич
RU2406070C1
Установка для изучения гидродинамических течений методом голографической интерферометрии 1991
  • Рыжков Сергей Сергеевич
  • Романовский Георгий Федорович
  • Липатников Сергей Иванович
  • Золотой Юрий Григорьевич
SU1783292A1
СПОСОБ КОМПЕНСАЦИИ ИЗМЕНЕНИЯ ПОЛОЖЕНИЯ ПРИЦЕЛЬНОГО ЗНАКА И ГОЛОГРАФИЧЕСКИЙ КОЛЛИМАТОРНЫЙ ПРИЦЕЛ 2007
  • Ковалев Михаил Сергеевич
  • Козинцев Валентин Иванович
  • Лушников Дмитрий Сергеевич
  • Маркин Владимир Васильевич
  • Одиноков Сергей Борисович
RU2355989C1
ГОЛОГРАФИЧЕСКИЙ КОЛЛИМАТОРНЫЙ ПРИЦЕЛ 2005
  • Одиноков Сергей Борисович
  • Бидеев Геннадий Александрович
  • Вареных Николай Михайлович
  • Дубынин Сергей Евгеньевич
  • Лушников Дмитрий Сергеевич
  • Полкунов Виктор Андреевич
  • Ширанков Александр Федорович
RU2327942C2
ГОЛОГРАФИЧЕСКИЙ ИНТЕРФЕРОМЕТР 1970
SU266103A1
Способ измерения частотных характеристик механических конструкций оптическим методом 2017
  • Осипов Михаил Николаевич
  • Щеглов Юрий Денисович
  • Лимов Михаил Дмитриевич
RU2675076C1
Голографический интерферометр для контроля формы внутренней поверхности отверстий 1991
  • Логинов Александр Владимирович
  • Борыняк Леонид Александрович
SU1772617A1
Способ автоматического регулирования процесса сварки давлением с подогревом 1978
  • Липкин Аркадий Самуилович
  • Каракозов Эдуард Сергеевич
  • Вигдорчик Семен Абрамович
  • Левин Александр Борисович
  • Ростковский Игорь Глебович
SU743814A1
ИНТЕРФЕРОМЕТР МАЙКЕЛЬСОНА С КОЛЕБЛЮЩИМИСЯ ЗЕРКАЛАМИ И ФУРЬЕ-СПЕКТРОМЕТР НА ЕГО ОСНОВЕ 2014
  • Палто Сергей Петрович
  • Гейвандов Артур Рубенович
  • Палто Виктор Сергеевич
RU2580211C2

Реферат патента 2014 года УСТРОЙСТВО ДЛЯ ВИЗУАЛИЗАЦИИ АКУСТИЧЕСКОГО ПОЛЯ В ОПТИЧЕСКИ ОТРАЖАЮЩЕЙ УПРУГОЙ ПОВЕРХНОСТИ

Изобретение может использоваться для неразрушающего контроля материалов. Устройство содержит лазер, делитель, первую и вторую линзы и последовательно соединенные генератор ультразвуковой частоты и пьезокерамический излучатель, находящийся в емкости, в которой также размещены на одной линии с излучателем исследуемый образец и собирающая акустическая линза. Стенка емкости в направлении образца от излучателя выполнена оптически отражающей. Емкость выполнена герметичной и наполнена инертным газом под давлением, обеспечивающим минимум переотражений на границах сред образца и газа. Оптически отражающая поверхность выполнена из двух оптически прозрачных тонких и прочных стенок, между которыми тонким слоем находится ртуть. Лазер при записи звукового изображения работает в ждущем импульсном режиме. Один из расщепленных делителем пучков лазера коллимируется первой линзой и далее, отражаясь от оптически отражающей упругой поверхности емкости, падает на голографическую пластину, а второй пучок коллимируется второй линзой и падает на ту же поверхность голографической пластины, формируя голографическую интерферограмму. Технический результат - повышение разрешающей способности устройства, увеличение его помехозащищенности и повышение простоты контроля. 1 ил.

Формула изобретения RU 2 505 806 C2

Устройство для визуализации акустического поля в оптически отражающей упругой поверхности, включающее последовательно соединенные генератор ультразвуковой частоты и пьезокерамический излучатель, находящийся в емкости, в которой также размещены на одной линии с излучателем исследуемый образец и собирающая акустическая линза, а стенка емкости в направлении образца от излучателя выполнена оптически отражающей, включающее также источник когерентного оптического излучения (лазер), делитель, первую и вторую линзы, отличающееся тем, что емкость выполнена герметично и наполнена инертным газом под давлением, обеспечивающим минимум переотражений на границах сред образца и газа, при этом оптически отражающая поверхность выполнена из двух оптически прозрачных тонких и прочных стенок, между которыми тонким слоем находится ртуть, а лазер при записи звукового изображения работает в ждущем импульсном режиме, а также оно снабжено голографической фотопластиной, причем один из расщепленных делителем пучков лазера коллимируется первой линзой и далее, отражаясь от оптически отражающей упругой поверхности емкости, падает на голографическую пластину, а второй пучок коллимируется второй линзой и падает на ту же поверхность голографической пластины, формируя голографическую интерферограмму.

Документы, цитированные в отчете о поиске Патент 2014 года RU2505806C2

US 3716826 А, 13.02.1973
US 20070113656 А1, 24.05.2007
US 20100149544 A1, 17.06.2010
US 4834106 A, 30.05.1989
Способ визуализации ультразвукового поля 1988
  • Малинка Сергей Анатольевич
SU1573347A1

RU 2 505 806 C2

Авторы

Киреев Сергей Иванович

Даты

2014-01-27Публикация

2012-04-04Подача