СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛЬНОЙ РАСТЯЖИМОСТИ ЦЕМЕНТНЫХ ШТУКАТУРНЫХ СОСТАВОВ Российский патент 2014 года по МПК G01N33/38 

Описание патента на изобретение RU2506587C1

Изобретение относится к области испытаний цементных штукатурных составов на предельную растяжимость при статическом нагружении.

Важным показателем для фасадных штукатурок является способность воспринимать развивающиеся в них усадочные и термомеханические напряжения без образования трещин. Трещиностойкость штукатурного раствора обеспечивает эстетический вид фасада и ограничивает попадание влаги под штукатурку, что может вызвать отслоение штукатурного слоя и отразиться на долговечности стены.

Известен способ определения условной деформативности цементных бетонов εult (Трещиностойкость бетона / В.В.Стольников, Р.Е.Литвинова. - М.: Энергия, 1972. - С.57-59), по которому эта характеристика рассчитывается как отношение прочности образцов при растяжении, получаемой раскалыванием кубов или цилиндров Rраск, к динамическому модулю упругости Един, определяемому на образцах из бетона того же состава физическими методами. Условную предельную растяжимость εult определяют из соотношения εult=Rраск/Eдин.

Недостатками этого способа являются следующие обстоятельства: данный способ косвенный; каждая из определяемых характеристик определяется с погрешностями. Кроме того, при определении деформации путем измерения прочности при растяжении раскалыванием и динамического модуля упругости прочность при раскалывании Rpacк обычно на 10-15% выше, чем прочность при растяжении Rp, определяемая при прямом испытании образцов-восьмерок материала на осевое растяжение, а динамический модуль упругости больше статического модуля упругости примерно на 20-25%. Это приводит к тому, что получаемая таким образом деформация фактически больше предельной растяжимости εult не менее чем на 15-20%.

Наиболее близким к предлагаемому является прямой способ определения деформативности бетона при растяжении на образцах-восьмерках (Трещиностойкость бетона / В.В.Стольников, Р.Е.Литвинова. - М.: Энергия, 1972. - С.55-56). По данному способу для определения дефомативности на образцы-восьмерки наклеиваются приборы измерения деформаций (тензодатчики сопротивления, механические тензометры), и образцы испытываются на прочность при растяжении. В основу приборов положен так называемый нулевой метод измерения сопротивлений проволочных датчиков, обеспечивающий высокую точность показаний приборов. К таким приборам относятся приборы серии АИД-1М, АИ-1, ИСД-3 и др.

Недостатком данного способа является трудность синхронизации данных измерения деформаций и разрушающей нагрузки, приводимой далее к напряжению.

В обоих вышеназванных способах реализуется испытание образцов материала штукатурного состава с размерами, отличными от толщины реального штукатурного слоя.

Задачей изобретения является упрощение технологии проведения испытаний, исключение необходимости применения средств тензометрии, повышение точности определения предельной растяжимости и проведение испытаний на слоях штукатурки с характерно малой толщиной от нескольких мм до 2-3 см.

Поставленная задача решается тем, что в способе определения предельной растяжимости цементных штукатурных составов, включающем испытание образцов материала штукатурного состава при растяжении, согласно изобретению величину предельной растяжимости определяют испытанием образцов - стальных балочек с нанесенным штукатурным составом по схеме двухточечного изгиба с плавным нагружением малыми ступенями и фиксацией ступени нагружения, соответствующей моменту трещинообразования, а значение предельной растяжимости расчитывают по формуле:

где εultш.р. - предельная растяжимость штукатурного раствора; Р - прикладываемая нагрузка, равная двум сосредоточенным силам Р/2, кН; а - расстояние от опоры балочки до точки приложения сосредоточенной силы Р/2, см; Es - модуль упругости стали, 2·105 МПа; b - ширина стальной балочки, см; h - высота балочки, см.

За счет обеспечения равномерного нагружения цементного штукатурного слоя достигается однородное напряженное состояние в сечении испытуемого образца за счет его центрирования при нагружении. Таким образом, достигается технологическая простота при проведении испытаний и повышается точность определения величины предельной растяжимости.

Способ осуществляется следующей последовательностью операций: подготавливают предварительно ошкуренный (для повышения адгезии) образец в виде стальной обезжиренной балочки из мягкой углеродистой стали, на нижнюю поверхность которой наносят штукатурный слой постоянной толщины. Далее образец выдерживают в нормальных условиях (температура (20±2)°С, влажность (90±5)%) необходимое время. По истечении срока хранения в нормальных условиях балочку помещают в естественные условия (температура (20±2)°С, влажность (55±5)%) на 24 ч для удаления избытка влаги. Далее балочку устанавливают на опоры пресса с механической системой нагружения и подвергают испытанию по схеме двухточечного изгиба с плавным нагружением малыми ступенями. За величину ступени принимается малый прирост нагрузки относительно предельно допустимой, исходя из предела текучести стали образца. После приложения очередной ступени нагружения штукатурный слой просматривают (при необходимости с помощью лупы) на возможность образования трещин на данном этапе нагружения. Во время испытания фиксируют величину ступени, соответствующую моменту трещинообразования. Нагружение производится в пределах 0,8-0,9 от уровня нагрузки, соответствующей пределу текучести стальной балочки. Предельная растяжимость определяется исходя из условия совместности деформаций стали и штукатурного слоя при допущении отсутствия влияния слоя раствора на напряженно-деформированное состояние стальной балочки. Точность метода оценивается деформацией, соответствующей 1/2 ее приращения за одну ступень, предшествующей трещинообразованию. Предельно возможная ошибка по деформации Δε соответственно 1/2 ступени нагрузки. Варьируя ступени приращения нагрузки, можно получить необходимую точность измерений.

На чертеже изображена схема испытания по схеме двухточечного изгиба с плавным нагружением малыми ступенями.

Применительно к нагружению по схеме двухточечного изгиба стальной балочки сечением b×h, длиной (пролетом) l изгибающий момент в зоне чистого изгиба составит

где Р - прикладываемая нагрузка, равная двум сосредоточенным силам Р/2, кН; а - расстояние от опоры до точки приложения сосредоточенной силы Р/2, см; М - изгибающий момент, кН·см;

где b - ширина стальной балочки, см; h - высота балочки, см; Ws - момент сопротивления сечения балочки, см3.

Нормальное напряжение в крайнем растянутом волокне балочки

при этом σs - предельно допустимое напряжение, принимаемое пониженным относительно предела текучести стали σу на 10-20%, МПа.

Из условия совместности деформации при допущении об отсутствии влияния слоя раствора на напряженно-деформированное состояние стальной балочки получим

где Es - модуль упругости стали, Es=2·105 МПа; εs - предельная растяжимость стальной балочки; εultш.р. - предельная растяжимость штукатурного раствора, равная

Предлагаемый способ может использоваться при оценке предельной растяжимости растворов и в исследованиях по оптимизации составов штукатурок с целью повышения их трещиностойкости.

Примеры реализации способа

Предлагаемый способ определения предельной растяжимости штукатурных составов обоснован результатами экспериментов.

Лабораторные исследования проводились для различных штукатурных составов: Baumit StartContact, Baumit Artoplast, Быстрой OK Теплоизоляция, цементно-песчаный раствор. По предлагаемому способу подготавливают предварительно ошкуренные обезжиренные стальные балочки (марка стали С230) размером 7×10×200 мм, на нижнюю поверхность которых наносят штукатурный слой постоянной толщины. Далее эти образцы выдерживают в нормальных условиях (температура (20±2)°С, влажность (90±5)%) необходимое количество суток. По истечении срока хранения в нормальных условиях балочки помещают в естественные условия (температура (20±2)°С, влажность (55±5)%) на сутки для удаления лишней влаги, после чего их устанавливают на опоры пресса с механической системой нагружения (пресс механический мощностью 5кН П-8) и подвергают испытанию по схеме двухточечного изгиба с плавным нагружением малыми ступенями. Испытания на растяжимость проводят в возрасте 14 и 28 суток.

В таблице показаны техника проведения эксперимента и результаты испытаний балочек с нанесенным штукатурным составом по схеме двухточечного изгиба на предельную растяжимость (см. Приложение).

Похожие патенты RU2506587C1

название год авторы номер документа
Способ определения предельной растяжимости строительного материала 1977
  • Михайловский Владимир Петрович
  • Пименов Александр Трофимович
SU670887A1
Дорожная плита 2020
  • Трофимов Валерий Иванович
  • Егоров Андрей Романович
  • Васючков Константин Алексеевич
RU2739818C1
Дорожная плита 2021
  • Трофимов Валерий Иванович
  • Ерофеев Данила Александрович
  • Васильев Данила Игоревич
  • Хитрич Григорий Алексеевич
RU2760668C1
Способ упрочнения деталей 1982
  • Попов Сергей Ильич
  • Михалев Михаил Семенович
  • Дерябин Лев Иванович
  • Сотников Вениамин Константинович
  • Берштейн Лазарь Исаакович
  • Малыгин Юрий Николаевич
  • Осадчук Григорий Иванович
  • Терешкин Леонид Владимирович
  • Коваль Владимир Виленович
  • Матвиенко Анатолий Филиппович
  • Шагалов Владимир Леонидович
SU1157087A1
СПОСОБ ИЗГОТОВЛЕНИЯ ФИБРОЦЕМЕНТНЫХ КОМПОЗИЦИЙ 2005
  • Сахибгареев Ринат Рашидович
  • Бабков Вадим Васильевич
  • Комохов Павел Григорьевич
  • Сахибгареев Роман Ринатович
  • Кабанец Валерий Владимирович
  • Мохов Владимир Николаевич
  • Терехов Иван Геннадьевич
  • Салов Александр Сергеевич
RU2303022C1
Способ определения трещиностойкости бетона 1981
  • Кныш Василий Львович
  • Федоров Александр Ефимович
  • Хохрин Николай Константинович
  • Шейкин Александр Ефимович
SU968760A1
Способ испытания железобетона на растяжение 1981
  • Вербецкий Гордий Петрович
  • Капанадзе Константин Михайлович
SU953507A1
СПОСОБ ИСПЫТАНИЯ УСТОЙЧИВОСТИ АСФАЛЬТОБЕТОНА К АТМОСФЕРНЫМ ВОЗДЕЙСТВИЯМ 1992
  • Углова Е.В.
  • Илиополов С.К.
  • Мардиросова И.В.
  • Криволапов Ю.П.
RU2025712C1
СПОСОБ ОЦЕНКИ УСТАЛОСТИ АСФАЛЬТОБЕТОНА ПРИ ЦИКЛИЧЕСКИХ ДИНАМИЧЕСКИХ ВОЗДЕЙСТВИЯХ 2011
  • Лаврушин Геннадий Алексеевич
  • Лаврушина Елена Геннадьевна
  • Овсянников Виктор Васильевич
  • Звонарев Михаил Иванович
  • Попов Алексей Александрович
  • Плаксин Максим Владимирович
  • Семенов Валерий Иванович
  • Гнедюк Дмитрий Сергеевич
  • Проскуряков Александр Владимирович
  • Гуляев Владимир Трофимович
  • Николайчук Николай Артемович
RU2483290C2
СУХАЯ СТРОИТЕЛЬНАЯ СМЕСЬ 2012
  • Васильев Сергей Михайлович
  • Щедрин Юрий Николаевич
  • Бударин Виктор Константинович
RU2528774C2

Реферат патента 2014 года СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛЬНОЙ РАСТЯЖИМОСТИ ЦЕМЕНТНЫХ ШТУКАТУРНЫХ СОСТАВОВ

Изобретение относится к области испытаний цементных штукатурных составов на предельную растяжимость при статическом нагружении. Сущность: величину предельной растяжимости определяют испытанием стальных балочек с нанесенным штукатурным составом по схеме двухточечного изгиба с плавным нагружением малыми ступенями и фиксацией ступени нагружения, соответствующей моменту трещинообразования, а значение предельной растяжимости рассчитывают по формуле. Технический результат: упрощение технологии проведения испытаний, исключение необходимости применения средств тензометрии, повышение точности определения предельной растяжимости и проведение испытаний на слоях штукатурки с характерно малой толщиной от нескольких мм до 2-3 см. 1 табл., 1 ил.

Формула изобретения RU 2 506 587 C1

Способ определения предельной растяжимости цементных штукатурных составов, включающий испытание образцов материала штукатурного состава при растяжении, отличающийся тем, что величину предельной растяжимости определяют испытанием стальных балочек с нанесенным штукатурным составом по схеме двухточечного изгиба с плавным нагружением малыми ступенями и фиксацией ступени нагружения, соответствующей моменту трещинообразования, а значение предельной растяжимости расcчитывают по формуле:

где - предельная растяжимость штукатурного раствора; Р - прикладываемая нагрузка, равная двум сосредоточенным силам Р/2, кН; а - расстояние от опоры балочки до точки приложения сосредоточенной силы Р/2, см; Es - модуль упругости стали, 2·105 МПа; b - ширина стальной балочки, см; h - высота балочки, см.

Документы, цитированные в отчете о поиске Патент 2014 года RU2506587C1

Способ определения предельной растяжимости строительного материала 1977
  • Михайловский Владимир Петрович
  • Пименов Александр Трофимович
SU670887A1
Способ определения предельной растяжимости бетона 1977
  • Караваев Анатолий Васильевич
SU670888A1
Устройство для определения физико-механических характеристик строительных материалов 1980
  • Михайловский Владимир Петрович
  • Коверт Иван Иосифович
SU898324A1
JP 60158334 A, 19.08.1985.

RU 2 506 587 C1

Авторы

Бабков Вадим Васильевич

Синицин Дмитрий Александрович

Резвов Олег Александрович

Гафурова Элина Альбертовна

Кузнецов Дмитрий Валерьевич

Чуйкин Александр Евгеньевич

Даты

2014-02-10Публикация

2012-08-01Подача