МОДЕЛЬ СТАЦИОНАРНОГО ПЛАЗМЕННОГО ДВИГАТЕЛЯ Российский патент 2014 года по МПК F03H1/00 

Описание патента на изобретение RU2509228C2

Предлагаемое изобретение относится к области электроракетных двигателей (ЭРД).

Известен стационарный плазменный двигатель (СПД) [1], содержащий катод, электромагнит, магнитопровод с полюсами, жестко связанную с магнитопроводом и расположенную внутри него кольцевую разрядную камеру, имеющую внутреннее и наружное кольца из диэлектрика, с расположенным внутри камеры кольцевым анодом-газораспределителем.

Такие двигатели, в настоящее время работающие, как правило, на рабочем теле ксеноне, нашли широкое применение в космических аппаратах в качестве маршевых двигателей и двигателей коррекции и ориентации.

К недостаткам СПД, использующих ксенон в качестве рабочего тела, относятся: большая стоимость ресурсной отработки двигателя и самого ксенона, малое производство ксенона, сравнительно небольшая плотность ксенона при достаточно большом давлении его в блоке хранения.

Этих недостатков в значительной степени должен быть лишен СПД, работающий на йоде [2] при предполагаемых близких рабочих характеристиках двигателей, работающих на указанных рабочих телах, из-за почти одинаковых атомных весов и потенциалов ионизации. Однако для проведения демонстрационных испытаний СПД на йоде требуется разработать и изготовить: систему хранения и подачи йода, двигатель с узлом предварительного разогрева анода-газораспределителя и постоянно нагреваемые тракты подачи йода в анод.

Известна принятая за прототип модель СПД [3], в которой исследуемое металлическое рабочее тело (магний, цинк) подается в двигатель не от специальной системы подачи металла в анод. При этом используется дополнительный анод, выполненный из исследуемого металла в виде колец, расположенных в разрывах разрядной камеры, выполненной из диэлектрика.

Однако в случае использования неэлектропроводящего кристаллического йода такой двигатель создать невозможно.

Целью предлагаемого изобретения является создание с минимальными материальными и временными затратами модели СПД, способной подтвердить работоспособность и характеристики двигателя при его работе на йоде.

Для достижения указанной цели в модели стационарного плазменного двигателя, содержащей кольцевую диэлектрическую разрядную камеру, с расположенным внутри нее кольцевым анодом-газораспределителем, магнитную систему и катод, внутри его разрядной камеры установлен дополнительный газораспределитель, выполненный в виде кольца, пристыкованного через изолятор к аноду-газораспределителю, причем в указанном кольце выполнены соосные глухие отверстия, равномерно расположенные по азимуту, каждое из которых герметично закрыто крышкой, имеющей сквозное калиброванное отверстие, при этом каждое из глухих отверстий с крышкой образует емкость, наполненную кристаллическим йодом, причем дополнительный газораспределитель установлен внутри разрядной камеры так, что его калиброванные отверстия обращены к аноду-газораспределителю.

На фиг.1 представлен общий вид модели стационарного плазменного двигателя. Внутри кольцевой разрядной камеры 1, выполненной из диэлектрика, смонтирован кольцевой анод-газораспределитель 2, герметично соединенный с системой хранения и подачи ксенона. Магнитная система 3 двигателя предназначена для создания радиального магнитного поля на выходе из разрядной камеры 1. Внутри разрядной камеры 1 установлен дополнительный газораспределитель 4, электроизолированный от анода-газораспределителя 2 с помощью изолятора 5. Дополнительный газораспределитель 4 выполнен в виде кольца 6 (фиг.2), в котором образованы соосные глухие отверстия 7, равномерно расположенные по азимуту кольца 6, каждое из которых герметично закрыто крышкой 8, имеющей сквозное калиброванное отверстие 9. Каждое из глухих отверстий 7 с крышкой 8 образуют емкость, наполненную кристаллическим йодом 10. Дополнительный газораспределитель 4 установлен внутри разрядной камеры 1 так, что его калиброванные отверстия 9 обращены к аноду-газораспределителю 2. В катод 11, предназначенный для нейтрализации истекающего из разрядной камеры 1 потока ионов, подается до 10% расхода ксенона.

Предлагаемая модель стационарного плазменного двигателя работает следующим образом.

Разогревают катод 11, подают ксенон в катод 11 и в анод-газораспределитель 2 и подают поджигное и разрядное напряжение. На номинальном режиме работы двигателя анод-газораспределитель 2 и внутренняя поверхность разрядной камеры 1 разогреваются до температуры примерно 450…500°С. При этом нагревается дополнительный газораспределитель 4, и йод начнет испаряться и через калиброванные отверстия 9 поступать в район анода-газораспределителя 2. Внутри разрядной камеры 1 происходит диссоциация и ионизация паров йода. Затем в радиальном магнитном, созданном магнитной системой 3 двигателя, и в продольном электрическом полях образуется азимутальный дрейф электронов и ускорение ионов йода в продольном электрическом поле. После чего отключают подачу ксенона в анод-газораспределитель 2, при этом подача ксенона в катод 11 сохраняется.

Равномерно распределенные по окружности кольцевого дополнительного газораспределителя 4 глухие отверстия 7, образующие емкости для йода 10, обеспечивают равномерную по азимуту подачу йода в разрядную камеру. Расход йода можно изменять как изменением диаметра калиброванного отверстия 9 в крышках 8, так и изменением количества заправленных йодом емкостей, например, заправляя не все емкости.

Положительный эффект от использования данной модели стационарного плазменного двигателя заключается в определении принципиальной возможности работы СПД на рабочем теле йод при минимальных доработках самого двигателя и исключении специальной системы подачи йода и нагревателей тракта подачи. Следует отметить, что кристаллический йод невозможно использовать в качестве дополнительного анода, как это сделано в модели двигателя - прототипе. Использование предлагаемой модели СПД значительно сокращает средства и время, необходимые для первого этапа исследования работоспособности и характеристик стационарного плазменного двигателя на кристаллическом йоде.

В принципе, такая модель двигателя может применяться для исследования возможности использования и других рабочих тел, например ртути.

Использованная литература.

1. Таюрский Г.И., Мурашко В.М. и др. «Анализ работы электроракетных двигателей в составе телекоммуникационного космического аппарата «Ямал-200». М.: Наука, Известия Академии наук. Энергетика. 2009 г., №3, с.124-130.

2. Островский В.Г. Патент RU №2351800, бюллетень №10, 2009 г. «Электроракетная двигательная установка и способ ее эксплуатации».

3. Jason M. Makela and other. Development of Magnesium and Zinc Hall-effect Thruster. IESC-2009-107, University of Michigan, USA September 20-24, 2009.

Похожие патенты RU2509228C2

название год авторы номер документа
ЭЛЕКТРОРАКЕТНЫЙ ДВИГАТЕЛЬ (ВАРИАНТЫ) И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ 2005
  • Островский Валерий Георгиевич
RU2309293C2
ЭЛЕКТРОРАКЕТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ 2005
  • Островский Валерий Георгиевич
RU2308610C2
СТАЦИОНАРНЫЙ ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ МАЛОЙ МОЩНОСТИ 2013
  • Бугрова Антонина Ивановна
  • Бугров Глеб Эльмирович
  • Давыдов Василий Андреевич
  • Сафронов Александр Аркадьевич
  • Харчевников Вадим Константинович
  • Бишаев Андрей Михайлович
  • Козинцева Марина Валентиновна
  • Десятсков Алексей Васильевич
  • Гордеев Иван Сергеевич
  • Смирнов Павел Германович
  • Шапошников Михаил Игоревич
  • Ильинова Анжелика Игоревна
  • Липатов Александр Семенович
RU2527898C1
ИОННЫЙ ДВИГАТЕЛЬ 2014
  • Островский Валерий Георгиевич
RU2565646C1
ДВИГАТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ 2012
  • Щербина Павел Александрович
  • Островский Валерий Георгиевич
RU2524315C2
ПЛАЗМЕННЫЙ УСКОРИТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ 2001
  • Сорокин И.Б.
  • Гопанчук В.В.
RU2209532C2
СПОСОБ РЕГУЛИРОВАНИЯ ВЕКТОРА ТЯГИ ЭЛЕКТРОРАКЕТНОГО ДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2000
  • Петросов В.А.
  • Байдаков С.Г.
  • Баранов В.И.
  • Васин А.И.
  • Назаренко Ю.С.
RU2196396C2
ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ 2017
  • Берникова Мира Юрьевна
  • Гопанчук Владимир Васильевич
  • Пятых Игорь Николаевич
RU2668588C2
СПОСОБ СОЗДАНИЯ РЕАКТИВНОЙ ТЯГИ В КОСМОСЕ 2000
  • Архипов Б.А.
  • Ким Владимир
  • Козлов В.И.
  • Корякин А.И.
  • Мурашко В.М.
  • Нестеренко А.Н.
  • Попов Г.А.
  • Скрыльников А.И.
RU2191292C2
ПЛАЗМЕННЫЙ УСКОРИТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ 2010
  • Гопанчук Владимир Васильевич
  • Потапенко Мира Юрьевна
RU2447625C2

Иллюстрации к изобретению RU 2 509 228 C2

Реферат патента 2014 года МОДЕЛЬ СТАЦИОНАРНОГО ПЛАЗМЕННОГО ДВИГАТЕЛЯ

Изобретение относится к области электроракетных двигателей. В модели стационарного плазменного двигателя (СПД), содержащей кольцевую диэлектрическую разрядную камеру, с расположенным внутри нее кольцевым анодом-газораспределителем, магнитную систему и катод, внутри его разрядной камеры установлен дополнительный газораспределитель, выполненный в виде кольца, пристыкованного через изолятор к аноду-газораспределителю. В указанном кольце выполнены соосные глухие отверстия, равномерно расположенные по азимуту, каждое из которых закрыто крышкой, имеющей сквозное калиброванное отверстие. Каждое из глухих отверстий с крышкой образует емкость, наполненную кристаллическим йодом, причем дополнительный газораспределитель установлен внутри разрядной камеры так, что его калиброванные отверстия обращены к аноду-газораспределителю. Технический результат - возможность определения принципиальной возможности работы СПД на рабочем теле - йод - при минимальных доработках самого двигателя и исключении специальной системы подачи йода и нагревателей тракта подачи, что значительно сокращает средства и время, необходимые для первого этапа исследования работоспособности и характеристик стационарного плазменного двигателя на кристаллическом йоде. 2 ил.

Формула изобретения RU 2 509 228 C2

Модель стационарного плазменного двигателя, содержащая кольцевую диэлектрическую разрядную камеру с расположенным внутри нее кольцевым анодом-газораспределителем, магнитную систему и катод, отличающаяся тем, что внутри разрядной камеры установлен дополнительный газораспределитель, выполненный в виде кольца, пристыкованного через изолятор к аноду-газораспределителю, причем в указанном кольце выполнены соосные глухие отверстия, равномерно расположенные по азимуту, каждое из которых закрыто крышкой, имеющей сквозное калиброванное отверстие, при этом каждое из глухих отверстий с крышкой образует емкость, наполненную кристаллическим йодом, причем дополнительный газораспределитель установлен внутри разрядной камеры так, что его калиброванные отверстия обращены к аноду-газораспределителю.

Документы, цитированные в отчете о поиске Патент 2014 года RU2509228C2

ЭЛЕКТРОРАКЕТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ 2005
  • Островский Валерий Георгиевич
RU2308610C2
СТЕНД ДЛЯ ИСПЫТАНИЯ ЭЛЕКТРОРАКЕТНОГО ДВИГАТЕЛЯ НА ЙОДЕ И СПОСОБ ИСПЫТАНИЯ НА СТЕНДЕ ЭЛЕКТРОРАКЕТНОГО ДВИГАТЕЛЯ, РАБОТАЮЩЕГО НА РАБОЧЕМ ТЕЛЕ ЙОДЕ 2008
  • Островский Валерий Георгиевич
RU2412373C2
МАГНИТОПЛАЗМОДИНАМИЧЕСКИЙ ДВИГАТЕЛЬ И СПОСОБ ЕГО РАБОТЫ 2007
  • Островский Валерий Георгиевич
RU2351800C1
JP 2000164580 A, 16.06.2000
US 6609363 B1, 26.08.2003
US 2008271430 A1, 06.11.2008.

RU 2 509 228 C2

Авторы

Кропотин Сергей Александрович

Бутрин Александр Викторович

Островский Валерий Георгиевич

Смоленцев Александр Алексеевич

Черашев Денис Валериевич

Даты

2014-03-10Публикация

2012-04-02Подача